目的探讨潜变量增长混合模型(latent growth mixture modeling,GMM)和潜类增长模型(latent class growth model,LCGM)在识别儿童体重增长变化潜在类别上的应用。方法以大连市932名6~12岁学龄儿童的体检纵向数据为例。运用Mplus8.3软件...目的探讨潜变量增长混合模型(latent growth mixture modeling,GMM)和潜类增长模型(latent class growth model,LCGM)在识别儿童体重增长变化潜在类别上的应用。方法以大连市932名6~12岁学龄儿童的体检纵向数据为例。运用Mplus8.3软件构建不同性别儿童体质指数(body mass index,BMI)变化的GMM和LCGM模型。结果LCGM模型对男女学龄儿童的生长轨迹均识别出3个增长趋势不同的亚组:“稳定组”、“肥胖组”、“偏瘦组”;GMM模型对男性学龄儿童的生长轨迹识别出2个增长趋势不同的亚组:“稳定增长组”和“肥胖增长组”。结论GMM和LCGM模型可以识别学龄儿童BMI发展轨迹的异质性,拓展了描述儿童体重动态变化的方法研究。展开更多
文摘目的探讨潜变量增长混合模型(latent growth mixture modeling,GMM)和潜类增长模型(latent class growth model,LCGM)在识别儿童体重增长变化潜在类别上的应用。方法以大连市932名6~12岁学龄儿童的体检纵向数据为例。运用Mplus8.3软件构建不同性别儿童体质指数(body mass index,BMI)变化的GMM和LCGM模型。结果LCGM模型对男女学龄儿童的生长轨迹均识别出3个增长趋势不同的亚组:“稳定组”、“肥胖组”、“偏瘦组”;GMM模型对男性学龄儿童的生长轨迹识别出2个增长趋势不同的亚组:“稳定增长组”和“肥胖增长组”。结论GMM和LCGM模型可以识别学龄儿童BMI发展轨迹的异质性,拓展了描述儿童体重动态变化的方法研究。