The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise ...The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise sources to the radiated noise of a submarine were compared and analyzed, and emphasis was put on the original source, production mechanism, and their correlative characteristics. On the basis of analysis on underwater tracking and pass through characteristics of the target submarine, the double-peak phenomenon was reasonably interpreted. Furthermore, the correctness of the theoretical interpretation was verified adequately in real submarine tests. The double-peak phenomenon indicates that the space distributing character on submarine radiated noise are both asymmetrical with time and space, whereas that is provided with directivity. Studying the double-peak phenomenon in depth has important reference value and meaning in engineering practice for understanding the underwater radiated noise field of submarines.展开更多
The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the...The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the submarine's hull is studied by solving the three dimensional N-S equations. The results show that under the condition of sea temperature surroundings of minus gradient, such as in summer the upper water's temperature is higher than the lower water, it is cold wake on the sea surface and hot wake on the submarine's plane. The temperature difference between the wake and the water around in the wake's initial part becomes more and more obvious as the wake's distance gets longer. Through the IR camera, the submarine's propeller wake is studied under the same temperature status. Obvious IR temperature difference signals can be observed and it is consistent with the numerical simulation for the submarine.展开更多
基金Supported by the Navy Equipment Advanced Research Project under Grant No. 40113070203
文摘The double-peak characteristic of underwater radiated noise in the near field on top of the target submarine was analyzed in depth on the basis of submarine test data on the sea. The contribution of three major noise sources to the radiated noise of a submarine were compared and analyzed, and emphasis was put on the original source, production mechanism, and their correlative characteristics. On the basis of analysis on underwater tracking and pass through characteristics of the target submarine, the double-peak phenomenon was reasonably interpreted. Furthermore, the correctness of the theoretical interpretation was verified adequately in real submarine tests. The double-peak phenomenon indicates that the space distributing character on submarine radiated noise are both asymmetrical with time and space, whereas that is provided with directivity. Studying the double-peak phenomenon in depth has important reference value and meaning in engineering practice for understanding the underwater radiated noise field of submarines.
基金Financially supported by the Fundamental Research Fund for the Central Universities(3132014039)China Postdoctoral Science Foundation
文摘The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the submarine's hull is studied by solving the three dimensional N-S equations. The results show that under the condition of sea temperature surroundings of minus gradient, such as in summer the upper water's temperature is higher than the lower water, it is cold wake on the sea surface and hot wake on the submarine's plane. The temperature difference between the wake and the water around in the wake's initial part becomes more and more obvious as the wake's distance gets longer. Through the IR camera, the submarine's propeller wake is studied under the same temperature status. Obvious IR temperature difference signals can be observed and it is consistent with the numerical simulation for the submarine.