A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine re...A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.展开更多
In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal ...In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.展开更多
A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction f...A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.展开更多
The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, ...The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.展开更多
文摘A multivariable regression(MVR) approach is proposed to identify the real power transfer between generators and loads.Based on solved load flow results,it first uses modified nodal equation method(MNE) to determine real power contribution from each generator to loads.Then,the results of MNE method and load flow information are utilized to determine suitable regression coefficients using MVR model to estimate the power transfer.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of the MVR output compared to that of the MNE method.The error of the estimate of MVR method ranges from 0.001 4 to 0.007 9.Furthermore,when compared to MNE method,MVR method computes generator contribution to loads within 26.40 ms whereas the MNE method takes 360 ms for the calculation of same real power transfer allocation.Therefore,MVR method is more suitable for real time power transfer allocation.
基金Scientific research project for the 10th five-year economic development period(2001BA607B02) a project from the Chinese Academy of Meteorological Sciences (7046/2001-9Y-2)
文摘In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.
基金Financial support for this study, provided by the Key Basic Research Program of China (973) (No. 2007CB209407), is gratefully acknowledged
文摘A uniaxial load experiment on coal rocks at different stress rates was carried out, based on the characteristics of acoustic emission (AE) signals in cracking coal rocks, decomposition, de-noising and reconstruction for the AE signals through wavelet packet transform for solving the current problems created by the presence of noise in AE signals and the existing problems in AE signal processing. The results show that the various characteristics of AE signals in coal rocks cracking under different situations can be clearly reflected, after the AE signals are de-noised by the wavelet packet. Compared to dry coal rocks, the number of AE occurrences in damp coal rocks was significantly reduced, as well as the average amplitude. The number of AE occurrences in damp and dry coal rocks clearly increased with increases in the loading rate, but the largest amplitude of the AE signals in damp coal rocks has been reduced. There is no clear evidence of change in dry coal rocks.
基金Natural Science Foundation of Guangdong Province (05003339)
文摘The interannual and interdecadal variations of moisture sinks over Guangdong are discussed with the NCEP/NCAR reanalysis data and observed precipitation data from 1958 to 2004. The results indicate that climatically, the amount of precipitation is larger than that of evaporation in spring and summer. Precipitation and evaporation almost balance each other in autumn and the amount of evaporation is larger than that of precipitation in winter. The interannual signal dominates the variations of moisture sinks in all seasons in Guangdong with a period of three-year oscillation in autumn and winter. Remarkable interdecadal signal characterized by a period of three-decade oscillation can be identified for winter and spring from seasonally averaged moisture sink data and from annually moisture data, with variance percentage larger than 40%. This result indicates that Guangdong is at a transitional stage from positive anomalies to negative anomalies. The moisture sink anomalies in winter and following spring over Guangdong are usually in-phase. Besides, there exist periodic oscillations with periods of 10 to 15 years in summer and autumn. The positive (negative) anomalies of moisture sinks over Guangdong are due to the intensified (weakened) moisture from the tropical areas being transported to the Southern China, accompanied by an intensified (weakened) moisture convergence.