Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this pheno...Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this phenomenon are introduced in this paper,and co-seismic response data of water temperature and water level are used to check the thermometer time system,confirming that this phenomenon is true. Using the harmonic analysis method,variations of time difference between water temperature and water level for the M2 wave are worked out,which indicates that this phenomenon exists during the whole observation. According to the variations of phase lags for water temperature and water level,and the survey of observation conditions, it is considered that the abnormal phenomenon may be related to inadequate passage of water caused by a well blockage at the depth where the water temperature probe was set.展开更多
In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic pa...In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic parameters( amplitude ratio and phase change)are extracted. We analyzed the features of the shape and stage change,and characteristic parameters of the tidal response of well water level before and after the earthquakes,which can provide a new method and approach to analyzing the response relationships between well water level and earth tide and barometric pressure. The results show that Luguhu Well and 9 other wells are affected by earth tides,and their well water level amplitude ratios and phases are relatively stable; the Nanxi Well and Dayao Well water level changes are affected by the barometric pressure combined with tide force,and their well water level amplitude ratios and phases are more discrete. The water level amplitude ratios and phases of Jiangyou Well,Luguhu Well and Dongchuan Well are significant to large earthquakes,and the relationship between seismic energy density and water level amplitude ratios and phases of M_2 wave of the three wells are presented.展开更多
This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at ...This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.展开更多
基金funded by the 12th "Five-year Plan" of National Science and Technology Sponsored Project,China(2012BAK19B02-04)
文摘Tidal phase of water temperature in Qixian well,Shanxi Province is ahead of water level,which is different from the normal tidal relationship between water temperature and water level. Observation curves of this phenomenon are introduced in this paper,and co-seismic response data of water temperature and water level are used to check the thermometer time system,confirming that this phenomenon is true. Using the harmonic analysis method,variations of time difference between water temperature and water level for the M2 wave are worked out,which indicates that this phenomenon exists during the whole observation. According to the variations of phase lags for water temperature and water level,and the survey of observation conditions, it is considered that the abnormal phenomenon may be related to inadequate passage of water caused by a well blockage at the depth where the water temperature probe was set.
基金sponsored by the Spark Program of Earthquake Technology of CEA in 2017(XH17026)Combination Project with Monitoring,Prediction and Scientific Research of Earthquake Technology,CEA(162205)
文摘In this paper,the long time series data of the well water-level data of 12 wells in the Sichuan and Yunnan area is analyzed by the Baytap-G tidal analysis software,and well water level tidal response characteristic parameters( amplitude ratio and phase change)are extracted. We analyzed the features of the shape and stage change,and characteristic parameters of the tidal response of well water level before and after the earthquakes,which can provide a new method and approach to analyzing the response relationships between well water level and earth tide and barometric pressure. The results show that Luguhu Well and 9 other wells are affected by earth tides,and their well water level amplitude ratios and phases are relatively stable; the Nanxi Well and Dayao Well water level changes are affected by the barometric pressure combined with tide force,and their well water level amplitude ratios and phases are more discrete. The water level amplitude ratios and phases of Jiangyou Well,Luguhu Well and Dongchuan Well are significant to large earthquakes,and the relationship between seismic energy density and water level amplitude ratios and phases of M_2 wave of the three wells are presented.
基金supported by National Natural Science Foundation of China(Grant No.40930637)Special Project for Earthquake Science(Grant No.200808079)Subject Foundation of Ministry of Education for Doctor Candidates in Universities(Grant No.20100022110001)
文摘This work focuses on variations of the Earth tidal factor and phase lag derived from groundwater observations before and after major earthquakes.It is based on an analysis of the data from four observational wells at boundaries between distinct active blocks of China mainland.These wells are also situated on several active fault zones and have exhibited considerable responses to the Wenchuan Ms8.0 earthquake of 2008 in China.We collected hourly records of water levels of these wells from 2007to 2009 and processed these data for analysis.The tidal factors,phase lags,and phase-difference changes of tidal residuals of each well were calculated.We found that when the Wenchuan quake happened,the tidal factors of the 4 wells were changing rapidly,while their phase lags and phase differences of tidal residuals declined swiftly,which may reflect the stress and strain changes of the well-aquifer system during the seismic generation.