A fully nonlinear,three-dimensional nonhydrostatic model driven by four principal tidal constituents(M2,S2,K1,and O1) is used to investigate the spatial-temporal characteristics and energetics of internal tides in Luz...A fully nonlinear,three-dimensional nonhydrostatic model driven by four principal tidal constituents(M2,S2,K1,and O1) is used to investigate the spatial-temporal characteristics and energetics of internal tides in Luzon Strait(LS).The model results show that,during spring(neap) tides,about 64(47) GW(1 GW=109 W) of barotropic tidal energy is consumed in LS,of which 59.0%(50.5%) is converted to baroclinic tides.About 22(11) GW of the derived baroclinic energy flux subsequently passes from LS,among which 50.9%(54.3%) flows westward into the South China Sea(SCS) and 45.0%(39.7%) eastward into the Pacific Ocean,and the remaining 16(13) GW is lost locally owing to dissipation and convection.It is revealed that generation areas of internal tides vary with the spring and neap tide,indicating different source areas for internal solitary waves in the northern SCS.The region around the Batan Islands is the most important generation region of internal tides during both spring and neap tides.In addition,the baroclinic tidal energy has pronounced seasonal variability.Both the total energy transferred from barotropic tides to baroclinic tides and the baroclinic energy flux flowing out of LS are the highest in summer and lowest in winter.展开更多
The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy R...The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.展开更多
In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal ...In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.展开更多
Proceeding from the statement about presence of the normal resilient medium in the cosmic space, the author concludes seismic nature of tides and a number of other aspects of this phenomenon. The analysis of contradic...Proceeding from the statement about presence of the normal resilient medium in the cosmic space, the author concludes seismic nature of tides and a number of other aspects of this phenomenon. The analysis of contradiction of the theory of tsunami to empiric facts led the author to conclude that the tsunami are forced and not free waves, and that the key moment in their distribution is the seismic compression of water.展开更多
Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their r...Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.展开更多
基金Supported by the Key Program of National Natural Science Foundation of China(No.41030855)the National High Technology Research and Development Program of China(863 Program)(No.2008AA09A402)
文摘A fully nonlinear,three-dimensional nonhydrostatic model driven by four principal tidal constituents(M2,S2,K1,and O1) is used to investigate the spatial-temporal characteristics and energetics of internal tides in Luzon Strait(LS).The model results show that,during spring(neap) tides,about 64(47) GW(1 GW=109 W) of barotropic tidal energy is consumed in LS,of which 59.0%(50.5%) is converted to baroclinic tides.About 22(11) GW of the derived baroclinic energy flux subsequently passes from LS,among which 50.9%(54.3%) flows westward into the South China Sea(SCS) and 45.0%(39.7%) eastward into the Pacific Ocean,and the remaining 16(13) GW is lost locally owing to dissipation and convection.It is revealed that generation areas of internal tides vary with the spring and neap tide,indicating different source areas for internal solitary waves in the northern SCS.The region around the Batan Islands is the most important generation region of internal tides during both spring and neap tides.In addition,the baroclinic tidal energy has pronounced seasonal variability.Both the total energy transferred from barotropic tides to baroclinic tides and the baroclinic energy flux flowing out of LS are the highest in summer and lowest in winter.
基金ACKNOWLEDGEMENT This work was supported by the National Na- tural Science Foundation of China under Gra- nts No. 61172079, 61231008, No. 61201141, No. 61301176 the National Basic Research Program of China (973 Program) under Grant No. 2009CB320404+2 种基金 the 111 Project under Gr- ant No. B08038 the National Science and Tec- hnology Major Project under Grant No. 2012- ZX03002009-003, No. 2012ZX03004002-003 and the Shaanxi Province Science and Techno- logy Research and Development Program un- der Grant No. 2011KJXX-40.
文摘The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.
基金Scientific research project for the 10th five-year economic development period(2001BA607B02) a project from the Chinese Academy of Meteorological Sciences (7046/2001-9Y-2)
文摘In this paper, some corrections was made to the assumption that the forcing is quasi-static, which is the basis of the nonlinear diabatic initialization scheme adopted by a global model T106L19. Thus the tidal signal is expressed and excluded from the initialization scheme. It shows that the new scheme captures the semi-diurnal pressure variation and is much closer to the uninitialized field. Compared with the standard initialization scheme, both the anomaly correlation coefficients and RMS of 500 hPa geopotential height simulated under the new scheme have improved significantly.
文摘Proceeding from the statement about presence of the normal resilient medium in the cosmic space, the author concludes seismic nature of tides and a number of other aspects of this phenomenon. The analysis of contradiction of the theory of tsunami to empiric facts led the author to conclude that the tsunami are forced and not free waves, and that the key moment in their distribution is the seismic compression of water.
文摘Due to the highly demand on the renewable energy sources as a free and a clean power resource, extracting energy from unsteady flow using marine and tidal current turbines has a distinct focusing nowadays. For their resource characteristic, extracting energy from marine/tidal current needs a simple and robust converter, which could overcome the drawbacks of the mechanical system such as gearbox and enhance conversion system stability. In this paper a new AC-DC-AC conversion system has been proposed. The new conversion system contains a middle stage DC-DC boost converter, which boost the generated rectified DC voltage higher enough that can enable the PWM inverter to generate the required voltage with the synchronized frequency. In order to investigate the efficient performance of the proposed conversion system especially at low current speed compared to the conventional one, different operating conditions have been studied. Moreover, the effect of including boost converter on the THD (total harmonic distortion) has also been checked. The new conversion system presents its capability to enhance and improve system performance not only with low current speed but also with high current speed.