A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. ...A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.展开更多
Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not...Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not restricted by weak topography,but provides an opportunity to examine the influence of topography.Ten typical cases are studied using different values of height and/or width of topography.By analyzing the baroclinic velocity fields,as well as their first eight baroclinic modes,it is found that the magnitude of baroclinic velocity increases and the vertical structure becomes increasingly complex as height increases or width decreases.However,when both height and width vary,while parameter s(the ratio of the topographic slope to the characteristic slope of the internal wave ray) remains invariant,the final pattern is influenced primarily by width.The conversion rate is studied and the results indicate that width determines where the conversion rate reaches a peak,and where it is positive or negative,whereas height affects only the magnitude.High and narrow topography is considerably more beneficial to converting energy from barotropic to baroclinic fields than low and wide topography.Furthermore,parameter s,which is an important non-dimensional parameter for internal tide generation,is not the sole parameter by which the baroclinic velocity fields and conversion rate are determined.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(Nos.2007AA09Z118,2008AA09A402)the National Natural Science Foundation of China(No.41076006)+1 种基金the International Cooperate Fund of NNSFC(No.40810104046)the Program for New Century Excellent Talents in University(111 Project)(No.B07036)
文摘A three-dimensional isopycnic-coordinate ocean model for the study of internal tides is presented. In this model, the ocean interior is viewed as a stack of isopycnic layers, each characterized by a constant density. The isopycnic coordinate performs well at tracking the depth variance of the thermocline, and is suitable for simulation of internal tides. This model consists of external and internal modes, and barotropic and baroclinic motions are calculated in the two modes, respectively. The capability of simulating internal tides was verified by comparing model results with an analytical solution. The model was then applied to the simulation of internal tides in the South China Sea (SCS) with the forcing of M2 and K1 tidal constituents. The results show that internal tides in the SCS are mainly generated in the Luzon Strait. The generated M2 internal tides propagate away in three different directions (branches). The branch with the widest tidal beam propagates eastward into the Pacific Ocean, the most energetic branch propagates westward toward Dongsha Island, and the least energetic branch propagates southwestward into the basin of the SCS. The generated KI internal tides propagate in two different directions (branches). One branch propagates eastward into the Pacific Ocean, and the other branch propagates southwestward into the SCS basin. The steepening process of internal tides due to shoaling effects is described briefly. Meridionally integrated westward energy fluxes into the SCS are comparable to the meridionally integrated eastward energy fluxes into the Pacific Ocean.
基金Supported by the National Natural Science Foundation of China(No.41371496)the National High Technology Research and Development Program of China(863 Program)(No.2013AA122803)the Fundamental Research Funds for the Central Universities(Nos.201262007,201362033)
文摘Internal tides generated upon two-dimensional Gaussian topographies of different sizes and steepness are investigated theoretically in a numerical methodology.Compared with previous theoretical works,this model is not restricted by weak topography,but provides an opportunity to examine the influence of topography.Ten typical cases are studied using different values of height and/or width of topography.By analyzing the baroclinic velocity fields,as well as their first eight baroclinic modes,it is found that the magnitude of baroclinic velocity increases and the vertical structure becomes increasingly complex as height increases or width decreases.However,when both height and width vary,while parameter s(the ratio of the topographic slope to the characteristic slope of the internal wave ray) remains invariant,the final pattern is influenced primarily by width.The conversion rate is studied and the results indicate that width determines where the conversion rate reaches a peak,and where it is positive or negative,whereas height affects only the magnitude.High and narrow topography is considerably more beneficial to converting energy from barotropic to baroclinic fields than low and wide topography.Furthermore,parameter s,which is an important non-dimensional parameter for internal tide generation,is not the sole parameter by which the baroclinic velocity fields and conversion rate are determined.