Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of ...Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of GW radar observation, and calculate four sub-tidal harmonic constants (O1, K1, M2 and S2). The tidal characteristics derived from the GW radar dataset agreed well with those from the tidal gauge data. The authors also analyzed the tidal energy flux and tidal energy dissipation rate. There was a good relationship between the tidal energy dissipation rate and topography. The study showed a good way to calculate tidal energy dissipation rate using GW radar data.展开更多
The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influe...The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area.展开更多
Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal ener...Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.展开更多
Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixin...Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.展开更多
Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposi...Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.展开更多
The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examin...The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examined in detail. These distributions are obtained from the results of a three-dimensional numerical simulation model (POM). Compared with observation data from seven stations, the root mean square errors of tidal height are 2.6 cm and 1.2 cm for M2 and N2 respectively, and those of phase-lag are 21.8~ and 15.8~ respectively. The majority of the tidal energy flux off the deep basin is along the shelf edge, although some of this flux crosses the shelf edge, especially in the southeast of the shelf break. The total M2 energy dissipation in the Bering Sea is 30.43 GW, which is about 10 times of that of N2 and $2. The semidiurnal tidal energy enters mainly to the Bering Sea by Samalga Pass, Amukta Pass and Seguam Pass, accounting more than 60% of the total energy entering the Being Sea from the Pacific.展开更多
基金supported by projects (No. 40976012 and No. 40906030)
文摘Using the single-point ground wave (GW) radar data at Shensi Station and the water level data at three stations (Shengsi, Luchaogang and Daishan), the authors obtained the flow vectors from the radial velocity of GW radar observation, and calculate four sub-tidal harmonic constants (O1, K1, M2 and S2). The tidal characteristics derived from the GW radar dataset agreed well with those from the tidal gauge data. The authors also analyzed the tidal energy flux and tidal energy dissipation rate. There was a good relationship between the tidal energy dissipation rate and topography. The study showed a good way to calculate tidal energy dissipation rate using GW radar data.
文摘The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The changes of the currents and residual currents in Qian Bay and near the reclamation areas are greater, but in other areas the changes are smaller, in which the currents have a change of around 1%, while the residual currents change ranges from 1.82%–9.61%. After reclamation, the tidal energy fluxes increase by 2.62%–5.24% inside and outside the JZB mouth, but decrease by 20.21%–87.23% near Qian Bay and the reclamation area.
基金Supported by the Chinese Marine Renewable Energy Special Fund(Nos.GHME2012ZC05,GHME2013GC03,GHME2013ZC01,GHME2014ZC01)
文摘Using an improved FVCOM numerical model, combined with the momentum-sinking scheme based on the structural characteristics of specific turbines, this study analyzed the temporal and spatial distributions of tidal energy resources before and after the deployment of tidal turbines near Pingtan Island, China. Considering factors such as the distribution of tidal stream energy, bathymetry, topography, and the design parameters of the turbines, an appropriate location for a demonstration tidal turbine was selected and the corresponding energy resource was evaluated. Several sites with strong tidal streams were considered: south of the northern cape, east of the southem cape, and the southern end of Haitan Bay. The former was thought most suitable for the deployment of a tidal energy turbine, with projected power generation for approximately 470 h per month. The average power of this demonstration was about 2.4 kW, and the annual electricity output was approximately 17.47 MWh. The intervention of the turbine device had little influence on the near-field tidal stream or water level. The tidal stream was reduced slightly in the area south of the northern cape, although the effect weakened further from the turbine. Conversely, the velocity increased slightly on both sides of the demonstration site. The difference in current speed with and without the turbine was greater at slack tide than still tide. The influence of turbine operation on water level was minor. The method adopted in this study can be considered a reference for the selection of sites for the demonstration of tidal stream energy. However, the method is unable describe the dynamic characteristics of the turbulent flow surrounding the deployed turbines, which has an important role regarding the optimal designs of the turbine blade and pile foundations. Therefore, we will continue to work to improve this model in future research.
基金supported by the National Natural Science Foundation of China (Nos. 40906001 and 40906099)National 863 High-Tech Program (No. 2008AA09A402)Chinese National Science & Technology Supporting Program (No. 2011BAC03B02-03-02)
文摘Resonance due to critical slope makes the internal wave generation more effectively than that due to supercritical or subcritical slopes(Zhang et al., 2008). Submarine ridges make a greater contribution to ocean mixing than continental margins in global oceans(Müller, 1977; Bell, 1975; Baines, 1982; Morozov, 1995). In this paper, internal wave generation driven by tidal flow over critical topography is examined in laboratory using Particle Image Velocimetry(PIV) and synthetic schlieren methods in synchrony. Non-tidal baroclinic velocities and vertical isopycnal displacements are observed in three representative regions, i.e., critical, outward-propagating, and reflection regions. Temporal and spatial distributions of internal wave rays are analyzed using the time variations of baroclinic velocities and vertical isopycnal displacement, and the results are consistent with those by the linear internal wave theory. Besides, the width of wave beam changes with the outward propagation of internal waves. Finally, through monitoring the uniformly-spaced 14 vertical profiles in the x-z plane, the internal wave fields of density and velocity fields are constructed. Thus, available potential energy, kinetic energy and energy fluxes are determined quantitatively. The distributions of baroclinic energy and energy fluxes are confined along the internal wave rays. The total depth averaged energy and energy flux of vertical profiles away from a ridge are both larger than those near the ridge.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11010201
文摘Based on the finite-volume coastal ocean model (FVCOM), a three-dimensional numerical model FVCOM was built to simulate the ocean dynamics in pre-dam and post-dam conditions in Bachimen (BCM). The domain decomposition method, which is effective in describing the conservation of volume and non-conservation of mechanical energy in the utilization of tidal energy, was employed to estimate the theoretical tidal energy resources and developable energy resources, and to analyze the hydrodynamic effect of the tidal power station. This innovative approach has the advantage of linking physical oceanography with engineering problems. The results indicate that the theoretical annual tidal energy resources is about 2x 108 kwh under the influence of tidal power station; Optimized power installation is confirmed according to power generation curve from numerical analysis; the developable resources is about 38.2% of theoretical tidal energy resources with the employment of one-way electricity generation. The electricity generation time and power are 3479 hours and 2.55~104KW, respectively. The power station has no effect on the tide pattern which is semi-diumal tide in both two conditions, but the amplitudes of main constituents apparently decrease in the area near the dam, with the ME decreasing the most, about 62.92 cm. The tidal prism shrinks to 2.28×107 m3, but can still meet the flow requirement for tidal power generation. The existence of station increases the flow rate along the waterway and enhances the residual current. There are two opposite vortexes formed on the east side beside the dam of the station, which leads to pollutants gathering.
基金Supported by the Outstanding Middle-aged and Young Scientist Foundation in Shandong Province under Grant of No.2008BS06003National High Technology Research and development Program (863 Program) (No.2007AA06A403)National Nature Science Foundation under Grant of No.40706008
文摘The spatial distribution of the energy flux, bottom boundary layer (BBL) energy dissipation, surface elevation amplitude and current magnitude of the major semidiurnal tidal constituents in the Bering Sea are examined in detail. These distributions are obtained from the results of a three-dimensional numerical simulation model (POM). Compared with observation data from seven stations, the root mean square errors of tidal height are 2.6 cm and 1.2 cm for M2 and N2 respectively, and those of phase-lag are 21.8~ and 15.8~ respectively. The majority of the tidal energy flux off the deep basin is along the shelf edge, although some of this flux crosses the shelf edge, especially in the southeast of the shelf break. The total M2 energy dissipation in the Bering Sea is 30.43 GW, which is about 10 times of that of N2 and $2. The semidiurnal tidal energy enters mainly to the Bering Sea by Samalga Pass, Amukta Pass and Seguam Pass, accounting more than 60% of the total energy entering the Being Sea from the Pacific.