期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多变量LSTM神经网络的澳大利亚大火预测研究 被引量:8
1
作者 李莉 杜丽霞 张子柯 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第2期311-316,共6页
长短周期记忆神经网络(LSTM)受益于能够捕获长期依赖关系的特点,在许多实际应用中展现了优异的性能。该文构建了LSTM多变量数据驱动的预测模型,通过多变量输入的方式预测澳大利亚森林大火。首先使用多变量LSTM预测模型对日最高温度进行... 长短周期记忆神经网络(LSTM)受益于能够捕获长期依赖关系的特点,在许多实际应用中展现了优异的性能。该文构建了LSTM多变量数据驱动的预测模型,通过多变量输入的方式预测澳大利亚森林大火。首先使用多变量LSTM预测模型对日最高温度进行预测,并与反向传播(BP)神经网络以及ARIMA预测模型的结果进行对比。研究表明:以相关变量为输入的BP神经网络无法考虑时序变化规律,预测误差最大;以温度单变量为输入的ARIMA根据时序变化做出相应预测,预测效果较好;多变量LSTM预测模型综合考虑了多种因素的相互影响,同时结合了时间序列依赖关系,预测效果最好。最后通过多变量LSTM预测模型对某节点是否着火进行了预测,预测结果与实际值契合较好。总体来说,多变量LSTM预测模型对澳大利亚大火的预测结果可信。 展开更多
关键词 澳大利亚大火 深度学习 长短周期记忆神经网络(LSTM) 多变量 神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部