期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多变量LSTM神经网络的澳大利亚大火预测研究
被引量:
8
1
作者
李莉
杜丽霞
张子柯
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第2期311-316,共6页
长短周期记忆神经网络(LSTM)受益于能够捕获长期依赖关系的特点,在许多实际应用中展现了优异的性能。该文构建了LSTM多变量数据驱动的预测模型,通过多变量输入的方式预测澳大利亚森林大火。首先使用多变量LSTM预测模型对日最高温度进行...
长短周期记忆神经网络(LSTM)受益于能够捕获长期依赖关系的特点,在许多实际应用中展现了优异的性能。该文构建了LSTM多变量数据驱动的预测模型,通过多变量输入的方式预测澳大利亚森林大火。首先使用多变量LSTM预测模型对日最高温度进行预测,并与反向传播(BP)神经网络以及ARIMA预测模型的结果进行对比。研究表明:以相关变量为输入的BP神经网络无法考虑时序变化规律,预测误差最大;以温度单变量为输入的ARIMA根据时序变化做出相应预测,预测效果较好;多变量LSTM预测模型综合考虑了多种因素的相互影响,同时结合了时间序列依赖关系,预测效果最好。最后通过多变量LSTM预测模型对某节点是否着火进行了预测,预测结果与实际值契合较好。总体来说,多变量LSTM预测模型对澳大利亚大火的预测结果可信。
展开更多
关键词
澳大利亚大火
深度学习
长短周期记忆神经网络(LSTM)
多变量
神经网络
下载PDF
职称材料
题名
基于多变量LSTM神经网络的澳大利亚大火预测研究
被引量:
8
1
作者
李莉
杜丽霞
张子柯
机构
山西大学计算机与信息技术学院
杭州师范大学阿里巴巴商学院
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第2期311-316,共6页
基金
国家自然科学基金(42075019,61673151)
山西省自然科学基金(201801D221003)
浙江省自然科学基金(LR18A050001,LY18A050004)。
文摘
长短周期记忆神经网络(LSTM)受益于能够捕获长期依赖关系的特点,在许多实际应用中展现了优异的性能。该文构建了LSTM多变量数据驱动的预测模型,通过多变量输入的方式预测澳大利亚森林大火。首先使用多变量LSTM预测模型对日最高温度进行预测,并与反向传播(BP)神经网络以及ARIMA预测模型的结果进行对比。研究表明:以相关变量为输入的BP神经网络无法考虑时序变化规律,预测误差最大;以温度单变量为输入的ARIMA根据时序变化做出相应预测,预测效果较好;多变量LSTM预测模型综合考虑了多种因素的相互影响,同时结合了时间序列依赖关系,预测效果最好。最后通过多变量LSTM预测模型对某节点是否着火进行了预测,预测结果与实际值契合较好。总体来说,多变量LSTM预测模型对澳大利亚大火的预测结果可信。
关键词
澳大利亚大火
深度学习
长短周期记忆神经网络(LSTM)
多变量
神经网络
Keywords
Australia fire
deep learning
long short-term memory
multivariate
neural network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多变量LSTM神经网络的澳大利亚大火预测研究
李莉
杜丽霞
张子柯
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部