The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as element...The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as elemental analysis.The results show that the complex of Eu(III)emits strong red luminescence when excited by UV light,and Eu(TTA)3(2NH2-Phen)has the higher sensitized luminescent efficiency and longer lifetime than Eu(TTA)3(Phen).In device of ITO/PVK/Eu(TTA)3(2NH2-Phen)/Al,the spectra of Eu(TTA)3(2NH2-Phen)with different ratios for spin-cast film were monitored.The main emitting peak at 614 nm can be attributed to the transition of 5 D0→ 7 F2 of Eu 3+ and this process results in the enhancement of red emission from electroluminescence device.The effect and mechanism of the ligands on the luminescence properties of europium complex were discussed.The results show that the luminescence intensity of the title complexes greatly increases in comparison with that of their corresponding complexes,revealing that the second ligands form very good synergistic effect with the first ligands.The title complexes possess excellent thermal stability properties,and are hopefully developed into fine PL and EL red materials.展开更多
The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 c...The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD200205 test system. In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures, the measurement results have been analyzed. In addition, the dependence of device size on temperature characteristics is discussed. The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.展开更多
Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the devel...Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.展开更多
The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states thr...The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colors, high quantum efficiencies and efficient energy/charge transfer processes. Recently, a significant breakthrough in lifetime tuning of excited states has been made;the purely organic molecules were found to have ultralonglived excited state under ambient conditions with luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores. Given the conceptual advance in understanding the fundamental behavior of excited state tuning in organic luminescent materials, the investigations of organic ultralong room-temperature phosphorescence(OURTP) should provide new directions for researches and have profound impacts on many different disciplines. Here, we summarized the recent understandings on the excited state tuning, the reported OURTP molecules and their design considerations,the spectacular photophysical performance, and the amazing optoelectronic applications of the newly emerged organic optoelectronic materials that free of heavy metals.展开更多
We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-lo...We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.展开更多
Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great intere...Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great interest owing to the high-temperature sensitivity of their photoluminescence,which could be applied to remote optical thermometry(ROT).Herein,all-inorganic and lead-free halide perovskite Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals(SCs)were prepared through the hydrothermal method and showed a strong temperature dependence of photoluminescence lifetime.Upon Te^(4+) doping,the nonemissive Cs_(2)InCl_(5)·H_(2)O SC exhibits a bright orange emission at 660 nm with a wide full width at half maximum of 180 nm.The strong phonon-exciton coupling promotes the formation of self-trapped excitons in the soft lattice of the zero-dimensional Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC.The Te^(4+) ions with the 5 s^(2) electronic configuration endow the Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC with a strong temperaturedependent photoluminescence lifetime.This SC reaches a maximum specific sensitivity of 0.062 K^(-1) at 320 K,thereby showing the potential advantages of indium-based metal halide perovskites in ROT applications.展开更多
基金Project(B201015)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(11551482)supported by the Scientific and Technical Research Project of Education Department of Heilongjiang Province,China+3 种基金Projects(L2010-124,L2010-144)supported by the Research Fund for Jiamusi University,ChinaProject(E08050204)supported by the Research Fund for the Provincial Key Laboratory of Biomaterials Jiamusi University,ChinaProject(2009-360)supported by Health Commission of Heilongjiang Province,ChinaProject supported by Key Laboratory of Luminescence and Optical Information,Beijing Jiaotong University,China
文摘The rare earth ternary complex of Eu 3+ with thenoyltrifluoroacetone,and 4,7-2NH2 phenanthroline was synthesized and well characterized by UV,fluorescent,IR spectrometry and X-ray diffractometry(XRD)as well as elemental analysis.The results show that the complex of Eu(III)emits strong red luminescence when excited by UV light,and Eu(TTA)3(2NH2-Phen)has the higher sensitized luminescent efficiency and longer lifetime than Eu(TTA)3(Phen).In device of ITO/PVK/Eu(TTA)3(2NH2-Phen)/Al,the spectra of Eu(TTA)3(2NH2-Phen)with different ratios for spin-cast film were monitored.The main emitting peak at 614 nm can be attributed to the transition of 5 D0→ 7 F2 of Eu 3+ and this process results in the enhancement of red emission from electroluminescence device.The effect and mechanism of the ligands on the luminescence properties of europium complex were discussed.The results show that the luminescence intensity of the title complexes greatly increases in comparison with that of their corresponding complexes,revealing that the second ligands form very good synergistic effect with the first ligands.The title complexes possess excellent thermal stability properties,and are hopefully developed into fine PL and EL red materials.
文摘The temperature characteristics for the different lasing modes at 300 K of intracavity contacted InGaAs/GaAs Vertical Cavity Surface Emitting Lasers(VCSELs) have been investigated experimentally by using the SV-32 cryostat and LD200205 test system. In combination with the simulation results of the reflective spectrum and the gain peak at different temperatures, the measurement results have been analyzed. In addition, the dependence of device size on temperature characteristics is discussed. The experimental data can be used to optimally design of VCSEL at high or cryogenic temperature.
文摘Photo-responsive room-temperature phosphorescent(RTP)materials have garnered significant interest due to the advantages of rapid response,spatiotemporal control,and contactless precision manipulation.However,the development of such materials remains in its infancy,underscoring the importance of exploiting novel and efficient light-responsive RTP molecules.In this work,three phenothiazine derivatives of TPA-PTZ,TPA-2PTZ,and TPA-3PTZ were successfully synthesized via the Buchwald-Hartwig C—N coupling reaction.By embedding these molecules as RTP guests into polymethyl methacrylate(PMMA)matrix,photo-induced RTP properties were realized.Upon sustained UV irradiation,there was an enhancement of 19 times in the quantum yield to reach a value of 5.68%.Remarkably,these materials exhibit superior alongside robust light and thermal stability,maintaining high phosphorescence intensity even after prolonged UV exposure(irradiation for>200 s by a 365 nm UV lamp with the power of 500μW·cm-2)or at higher temperature up to 75℃.The outstanding properties of these photo-induced RTP materials make them promising candidates for applications in information encryption,anti-counterfeiting,and advanced optical materials.
基金supported in part by the National Natural Science Foundation of China(21274065,21304049,61204048 and 51173081)The Ministry of Education of China(IRT1148)+1 种基金a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(YX03001)the Qing Lan Project of Jiangsu Province
文摘The exponential growth of utilizing synthetic organic molecules in optoelectronic applications poses strong demands for rational control over the excited states of the materials. The manipulation of excited states through molecular design has led to the development of high-performance optoelectronic devices with tunable emission colors, high quantum efficiencies and efficient energy/charge transfer processes. Recently, a significant breakthrough in lifetime tuning of excited states has been made;the purely organic molecules were found to have ultralonglived excited state under ambient conditions with luminescence lifetimes up to 1.35 s, which are several orders of magnitude longer than those of conventional organic fluorophores. Given the conceptual advance in understanding the fundamental behavior of excited state tuning in organic luminescent materials, the investigations of organic ultralong room-temperature phosphorescence(OURTP) should provide new directions for researches and have profound impacts on many different disciplines. Here, we summarized the recent understandings on the excited state tuning, the reported OURTP molecules and their design considerations,the spectacular photophysical performance, and the amazing optoelectronic applications of the newly emerged organic optoelectronic materials that free of heavy metals.
文摘We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.
基金supported by the National Natural Science Foundation of China(U2001214)the Natural Science Foundation of Guangdong Province(2019B1515120050)the Fundamental Research Funds for the Central Universities。
文摘Zero-dimensional metal halide perovskites have captured intense research interest owing to their unique optoelectronic properties.Particularly,metal halides with the ns^(2) electronic configuration are of great interest owing to the high-temperature sensitivity of their photoluminescence,which could be applied to remote optical thermometry(ROT).Herein,all-inorganic and lead-free halide perovskite Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O single crystals(SCs)were prepared through the hydrothermal method and showed a strong temperature dependence of photoluminescence lifetime.Upon Te^(4+) doping,the nonemissive Cs_(2)InCl_(5)·H_(2)O SC exhibits a bright orange emission at 660 nm with a wide full width at half maximum of 180 nm.The strong phonon-exciton coupling promotes the formation of self-trapped excitons in the soft lattice of the zero-dimensional Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC.The Te^(4+) ions with the 5 s^(2) electronic configuration endow the Te^(4+)-doped Cs_(2)InCl_(5)·H_(2)O SC with a strong temperaturedependent photoluminescence lifetime.This SC reaches a maximum specific sensitivity of 0.062 K^(-1) at 320 K,thereby showing the potential advantages of indium-based metal halide perovskites in ROT applications.