The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence(LIF)technique.The superhydrophobic surface was prepared using a sol-ge...The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence(LIF)technique.The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate.From the obtained fluorescence images,the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed.It was found that,at the beginning of the droplet freezing process,liquid water turned into ice at a very fast rate.Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process.In addition,the freezing time was found to reduce with the decrease of the test plate temperature.Besides,when the test plate temperature is relatively high,the effect of droplet volume on the freezing time is very significant.Over all,we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.展开更多
基金supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and Science and Techology Commission of Shanghai Municipality(Grant No.11DZ2260400)
文摘The freezing and melting process of a small water droplet on a superhydrophobic cold surface was investigated using the Laser Induced Fluorescence(LIF)technique.The superhydrophobic surface was prepared using a sol-gel method on a red copper test plate.From the obtained fluorescence images,the phase transition characteristics during the freezing and melting process of a water droplet were clearly observed.It was found that,at the beginning of the droplet freezing process,liquid water turned into ice at a very fast rate.Such phase transition process decreased gradually with time and the volume of frozen ice approached a constant value at the end of the icing process.In addition,the freezing time was found to reduce with the decrease of the test plate temperature.Besides,when the test plate temperature is relatively high,the effect of droplet volume on the freezing time is very significant.Over all,we provide some tentative insights into the microphysical process related to the icing and melting process of water droplets.