Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is...Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.展开更多
A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FD...A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FDTD) method.The results show that the light should be localized by photonic crystals(PCs),and the interaction between light and gain medium should be enhanced,while the mode of laser should be modulated.These results indicate that the PCs could control the spontaneous emission,and lead the radiation emission to the needed frequency.展开更多
基金The project supported by Education Department of Jiangsu Province of China under Grant No. 06KJD140111
文摘Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
基金supported by the National Natural Science Foundation of China (Nos.60768001 and 60808019)the Natural Science Foundation of Jiangxi Province (No. 2010gzw0045)
文摘A new scheme for fabricating a kind of flexible semiconductor micro-laser is put forward.And the optical properties of this kind of flexible semiconductor laser are investigated by the finite difference time domain(FDTD) method.The results show that the light should be localized by photonic crystals(PCs),and the interaction between light and gain medium should be enhanced,while the mode of laser should be modulated.These results indicate that the PCs could control the spontaneous emission,and lead the radiation emission to the needed frequency.