Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld...Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.展开更多
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro...The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.展开更多
To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was an...To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.展开更多
The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fus...The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.展开更多
This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s la...This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.展开更多
基金Project(50974046/E041607) supported by the National Natural Science Foundation of China
文摘Dissimilar metal joining between NiTi shape memory alloy(SMA) and stainless steel was conducted.A cluster of NiTi SMA wires were first joined with tungsten inert gas(TIG) welding process,then the NiTi SMA TIG weld was welded to a stainless steel pipe with laser spot welding process.The microstructure of the welds was examined with an optical microscope and the elemental distribution in the welds was measured by electron probe microanalysis(EPMA).The results show that TiC compounds dispersively distribute in the NiTi SMA TIG weld.However,the amount of TiC compounds greatly decreases around the fusion boundary of the laser spot weld between the NiTi SMA and stainless steel.Mutual diffusion between NiTi shape memory alloy and stainless steel happen within a short distance near the fusion boundary,and intermetallic compounds such as Ni3Ti+(Fe,Ni)Ti appear around the fusion boundary.
基金financially supported by the National Natural Science Foundation of China(No.51704001)the Natural Science Foundation of Anhui Province,China(No.2008085J23)the Talent Project of Anhui Province,China(Z175050020001)。
文摘The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.
基金The authors would like to acknowledge the financial support from National Key Research and Development Program of China(2018YFB1107801 and 2018YFB1107802)Science Fund for Creative Research Groups of NSFC(51621064)+1 种基金National Natural Science Foundation of China(51790172)Fundamental Research Funds for the Central University(DUT19LAB06).
文摘To clarify the transformation mechanism of secondary phase and the mechanism of intergranular corrosion in laser welding Ni-based alloy (Hastelloy C-276)/304 stainless steel with filler wire,the secondary phase was analyzed by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM).The evaluation of intergranular corrosion resistance of the welded joints was conducted by double-loop electrochemical potentiokinetic reactivation(DL-EPR) method,and at the same time the chemical compositions of the corrosion surface were analyzed by energy-dispersive spectrometry (EDS).The results show that p phase has complete coherence relationship withμphase,and the coherent relationship is described as[001]p//■and[430]p//[0001]μ.Theμphase is rapidly transformed from p phase,which is the inhomogeneous phase transformation.The transformation of secondary phase will increase the susceptibility to intergranular corrosion.Therefore,the transformation of secondary phase should be avoided in the welding process.
基金Project(51405392)supported by the National Natural Science Foundation of ChinaProject(2019T120954)supported by the China Postdoctoral Science Foundation+1 种基金Project(2018BSHQYXMZZ31)supported by the Shaanxi Provincial Postdoctoral Science Foundation,ChinaProject(3102019MS0404)supported by the Fundamental Research Funds for the Central Universities,China.
文摘The microstructure evolution and high-temperature mechanical properties of laser beam welded TC4/TA15 dissimilar titanium alloy joints under different welding parameters were studied.The results show that the weld fusion zone of TC4/TA15 dissimilar welded joints consists of coarsenedβcolumnar crystals that contain mainly acicularα’martensite.The heat affected zone is composed of the initialαphase and the transformedβstructure,and the width of heat affected zone on the TA15 side is narrower than that on the TC4 side.With increasing temperature,the yield strength and ultimate tensile strength of the TC4/TA15 dissimilar welded joints decrease and the highest plastic deformation is obtained at 800°C.The tensile strength of the dissimilar joints with different welding parameters and base material satisfies the following relation(from high to low):TA15 base material>dissimilar joints>TC4 base material.The microhardness of a cross-section of the TC4/TA15 dissimilar joints reaches a maximum at the centre of the weld and is reduced globally after heat treatment,but the microhardness distribution is not changed.An elevated temperature tensile fracture of the dissimilar joints is located on the side of the TC4 base material.Necking occurs during the tensile tests and the fracture characteristics are typical when ductility is present in the material.
基金Project(52004154) supported by the National Natural Science Foundation of ChinaProject(ZR2020QE002) supported by the Shandong Provincial Natural Science Foundation,ChinaProject(6142005190208) supported by the National Key Laboratory Foundation of China。
文摘This work aims to establish a suitable numerical simulation model for hybrid laser-electric arc heat source welding of dissimilar Mg alloys between AZ31 and AZ80. Based on the energy conservation law and Fourier’s law of heat conduction, the differential equations of the three-dimensional temperature field for nonlinear transient heat conduction are built. According to the analysis of nonlinear transient heat transfer, the equations representing initial conditions and boundary conditions are obtained. The “double ellipsoidal heat source + 3D Gaussian heat source”combination was chosen to construct the laser-electric arc hybrid heat source. The weld bead morphologies and the distribution of temperature, stress, displacement and plastic strains are numerically simulated. The actual welding experiments were performed by a hybrid laser-electric arc welding machine. The interaction mechanism between laser and electric arc in the hybrid welding of Mg alloys is discussed in detail. The hybrid heat source can promote the absorption of laser energy and electric arc in the molten pool, resulting in more uniform energy distribution in the molten pool and the corresponding improvement of welding parameters. This work can provide theoretical guidance and data supports for the optimization of the hybrid laser-electric arc welding processes for Mg alloys.