In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The ...In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金financial supports from the National Key Research and Development Program of China(Nos.2016YFB0301000,2016YFB0701204)the National Natural Science Foundation of China(No.51821001).
文摘In order to verify the feasibility of producing Mg−rare earth(RE)alloy by selective laser melting(SLM)process,the microstructure and mechanical properties of Mg−15Gd−1Zn−0.4Zr(wt.%)(GZ151K)alloy were investigated.The results show that fine grains(~2μm),fine secondary phases and weak texture,were observed in the as-fabricated(SLMed)GZ151K Mg alloy.At room temperature,the SLMed GZ151K alloy has a yield strength(YS)of 345 MPa,ultimate tensile strength(UTS)of 368 MPa and elongation of 3.0%.After subsequent aging(200℃,64 h,T5 treatment),the YS,UTS and elongation of the SLMed-T5 alloy are 410 MPa,428 MPa and 3.4%,respectively,which are higher than those of the conventional cast-T6 alloy,especially with the YS increased by 122 MPa.The main strengthening mechanisms of the SLMed GZ151K alloy are fine grains,fine secondary phases and residual stress,while after T5 treatment,the YS of the alloy is further enhanced by precipitates.