This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing...This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.展开更多
The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)in...The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.展开更多
The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles...The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles(2 wt%−8 wt%)and fabricated by L-PBF.The microstructure consists of aβmatrix with partially unmelted pure tantalum distributed along the boundaries of molten pool owing to the Marangoni convention.Because the melting process of Ta absorbs lots of energy,the size of molten pool becomes smaller with the increase of Ta content.The fine microstructure exists in the center of melt pool while coarse microstructure is on the boundaries of melt pool because of the existence of heat-affected zone.The columnar-to-equiaxed transitions(CETs)happen in the zones near the unmelted Ta,and the low lattice mismatch induced by solid Ta phase is responsible for this phenomenon.The recrystallization texture is strengthened while the fiber texture is weakened when the tantalum content is increased.Due to the formation of refined martensiteα′grains during L-PBF,the compressive strengths of L-PBF-processed samples are higher than those fabricated by traditional processing technologies.The present research will provide an important reference for biomedical alloy design via L-PBF process in the future.展开更多
Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat ...Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat treatment(HT)to obtain LPBF nickel-based superalloy parts with ideal properties and fewer defects.The results show that HIP process can improve the densification,while the conventional HT can eliminate the micro-defects to improve the mechanical properties.After HIP treatment,the defect volume fraction of LPBF specimens decreases.After HT,the defect content of HIP+HT specimens increases slightly.After post-treatment,the hardness shows a decreasing trend,and the tensile strength and post-break elongation of HIP+HT specimens increase to 1326 MPa and 21.3%,respectively,at room temperature.展开更多
基金Project(2022A1515010304)supported by the Guangdong Basic and Applied Basic Research Foundation,ChinaProject(52305358)supported by the National Natural Science Foundation of China+2 种基金Project(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(QT-2023-001)supported by the Young Talent Support Project of Guangzhou,ChinaProject(2023ZYGXZR061)supported by the Fundamental Research Funds for the Central Universities,China。
文摘This work investigated the effect of process parameters on densification,microstructure,and mechanical properties of a nickel-aluminum-bronze(NAB)alloy fabricated by laser powder bed fusion(LPBF)additive manufacturing.The LPBF-printed NAB alloy samples with relative densities of over 98.5%were obtained under the volumetric energy density range of 200−250 J/mm^(3).The microstructure of the NAB alloy printed in both horizontal and vertical planes primarily consisted ofβ'martensitic phase and bandedαphase.In particular,a coarser-columnar grain structure and stronger crystallographic texture were achieved in the vertical plane,where the maximum texture intensity was 30.56 times greater than that of random textures at the(100)plane.Increasing the volumetric energy density resulted in a decrease in the columnar grain size,while increasing the amount ofαphase.Notably,β_(1)'martensitic structures with nanotwins and nanoscaleκ-phase precipitates were identified in the microstructure of LPBF-printed NAB samples with a volumetric energy density of 250 J/mm^(3).Furthermore,under optimal process parameters with a laser power of 350 W and scanning speed of 800 mm/s,significant improvements were observed in the microhardness(HV 386)and ultimate tensile strength(671 MPa),which was attributed to an increase in refined acicular martensite.
基金Financial supports from the National Natural Science Foundation of China (No.52071343)the Leading Innovation and Entrepreneurship Team of Zhejiang Province,China—Automotive Light Alloy Innovation Team (No.2022R01018)are gratefully acknowledged。
文摘The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.
基金Projects(51975061,51775055)supported by the National Natural Science Foundation of ChinaProject(2020JJ5599)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(19C0032,19B033)supported by the Research Foundation of Education Bureau of Hunan Province,China。
文摘The expanding of material library of laser powder bed fusion(L-PBF)is of great significance to the development of material science.In this study,the biomedical Ti-13Nb-13Zr powder was mixed with the tantalum particles(2 wt%−8 wt%)and fabricated by L-PBF.The microstructure consists of aβmatrix with partially unmelted pure tantalum distributed along the boundaries of molten pool owing to the Marangoni convention.Because the melting process of Ta absorbs lots of energy,the size of molten pool becomes smaller with the increase of Ta content.The fine microstructure exists in the center of melt pool while coarse microstructure is on the boundaries of melt pool because of the existence of heat-affected zone.The columnar-to-equiaxed transitions(CETs)happen in the zones near the unmelted Ta,and the low lattice mismatch induced by solid Ta phase is responsible for this phenomenon.The recrystallization texture is strengthened while the fiber texture is weakened when the tantalum content is increased.Due to the formation of refined martensiteα′grains during L-PBF,the compressive strengths of L-PBF-processed samples are higher than those fabricated by traditional processing technologies.The present research will provide an important reference for biomedical alloy design via L-PBF process in the future.
基金Natural Science Foundation for Colleges and Universities of Jiangsu Province(22KJB430023)Youth Science and Technology Innovation Project of Jiangsu University of Science and Technology(1172922101)。
基金National Key R&D Program of China(2021YFB3700401)National Science and Technology Major Project(Y2019-VII-0011-0151)Science Center for Gas Turbine Project(HT-P2022-C-Ⅳ-002-001)。
文摘Defects such as cracks and micropores exist in nickel-based superalloy during laser powder bed fusion(LPBF),hindering their application in various fields.Hot isostatic pressing(HIP)was combined with conventional heat treatment(HT)to obtain LPBF nickel-based superalloy parts with ideal properties and fewer defects.The results show that HIP process can improve the densification,while the conventional HT can eliminate the micro-defects to improve the mechanical properties.After HIP treatment,the defect volume fraction of LPBF specimens decreases.After HT,the defect content of HIP+HT specimens increases slightly.After post-treatment,the hardness shows a decreasing trend,and the tensile strength and post-break elongation of HIP+HT specimens increase to 1326 MPa and 21.3%,respectively,at room temperature.