The biocompatibility of orthopedic implants is closely related to their elastic modulus and surface properties.The objective of this study was to determine the effects of cold rolling,recrystallization and laser surfa...The biocompatibility of orthopedic implants is closely related to their elastic modulus and surface properties.The objective of this study was to determine the effects of cold rolling,recrystallization and laser surface melting(LSM)on the microstructure and mechanical properties of a biphase(α″+β)Ti-30Nb-4Sn alloy.X-ray diffraction(XRD)texture analysis of the cold-rolled substrate revealed the[302]α″//ND texture component,while analysis of the recrystallized substrate showed the[302]α″//ND and[110]α″//ND components.Theβ-phase texture could not be directly measured by XRD,but the presence of the[111]β//ND texture component was successfully predicted by considering the orientation relationship between theα″andβphases.Nanoindentation measurements showed that the elastic modulus of the cold-rolled substrate(63GPa)was lower than that of the recrystallized substrate(74GPa).Based on the available literature and the results presented here,it is suggested that this difference is caused by the introduction of crystal defects during cold deformation.The combined nanoindentation/EBSD analysis showed that the nanoindentation results are not affected by crystal orientation.LSM of the deformed alloy produced changes in hardness,elastic modulus and crystallographic texture similar to those produced by recrystallization heat treatment,creating a stiffness gradient between surface and substrate.展开更多
Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray d...Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray diffractometer was used to measure the residual stress. The experimental results demonstrate that the significantly enhanced hydrophilicity was induced by the increasing thermal residual stress of SiC materials after the aqueous quenching. It was found that the decrease in the contact angle increased with the increasing quenching temperature. Quenching at 350℃ led to the change of contact angle from 89.28° to 70.88° for the smooth surface, while from 72.25° to 33.75° for the laser-textured surface with depth 8 μm. Further, the surface hydrophobicity was enhanced by the release of thermal residual stress after quenching, thereby leading to an increase in the contact angle over time. The transformation of wetting behaviors on laser textured SiC surfaces can be achieved mutually by the aqueous quenching method.展开更多
基金supported by the Brazilian Funding Agencies CAPES(Federal Agency for the Support and Improvement of Higher Education)(Grant No.33003017)CNPq(National Council for Scientific and Technological Development)(Grant No.233006/2014-1)FAPESP(Sao Paulo Research Foundation)(Grant No.2011/19982-2)
文摘The biocompatibility of orthopedic implants is closely related to their elastic modulus and surface properties.The objective of this study was to determine the effects of cold rolling,recrystallization and laser surface melting(LSM)on the microstructure and mechanical properties of a biphase(α″+β)Ti-30Nb-4Sn alloy.X-ray diffraction(XRD)texture analysis of the cold-rolled substrate revealed the[302]α″//ND texture component,while analysis of the recrystallized substrate showed the[302]α″//ND and[110]α″//ND components.Theβ-phase texture could not be directly measured by XRD,but the presence of the[111]β//ND texture component was successfully predicted by considering the orientation relationship between theα″andβphases.Nanoindentation measurements showed that the elastic modulus of the cold-rolled substrate(63GPa)was lower than that of the recrystallized substrate(74GPa).Based on the available literature and the results presented here,it is suggested that this difference is caused by the introduction of crystal defects during cold deformation.The combined nanoindentation/EBSD analysis showed that the nanoindentation results are not affected by crystal orientation.LSM of the deformed alloy produced changes in hardness,elastic modulus and crystallographic texture similar to those produced by recrystallization heat treatment,creating a stiffness gradient between surface and substrate.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR14E050001)the National Natural Science Foundation of China(Grant No.51275473)
文摘Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray diffractometer was used to measure the residual stress. The experimental results demonstrate that the significantly enhanced hydrophilicity was induced by the increasing thermal residual stress of SiC materials after the aqueous quenching. It was found that the decrease in the contact angle increased with the increasing quenching temperature. Quenching at 350℃ led to the change of contact angle from 89.28° to 70.88° for the smooth surface, while from 72.25° to 33.75° for the laser-textured surface with depth 8 μm. Further, the surface hydrophobicity was enhanced by the release of thermal residual stress after quenching, thereby leading to an increase in the contact angle over time. The transformation of wetting behaviors on laser textured SiC surfaces can be achieved mutually by the aqueous quenching method.