针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能...针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。展开更多
针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimize...针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。展开更多
文摘针对Gmapping SLAM(simultaneous location and mapping)算法在地图构建过程中对里程计定位精度要求较高且存在粒子耗散、退化等问题,本文首先设计出并行视觉识别与定位网络,用视觉特征与定位信息弥补粒子退化与激光点的漂移,强化定位能力,提高语义信息与构图精度;其次优化提议分布,将观测模型从里程计观测模型变换为激光观测模型并进行高斯采样,用更少的粒子覆盖机器人的概率分布;最后通过贝叶斯规则将视觉信息与激光信息融合,利用仿真工具、机器人平台与原算法进行对比,实验结果表明该算法不仅有效地提高地图构建的精确度与鲁棒性而且丰富了地图的语义信息。
文摘针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。