同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术可使自动驾驶车辆在未知环境中根据车载传感器采集到的数据估计自身位姿,建立环境地图,为车辆的规划、决策提供定位信息,是近年来自动驾驶技术研究的热点之一。基于车...同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术可使自动驾驶车辆在未知环境中根据车载传感器采集到的数据估计自身位姿,建立环境地图,为车辆的规划、决策提供定位信息,是近年来自动驾驶技术研究的热点之一。基于车载激光雷达的点云数据,聚焦SLAM技术在自动驾驶领域的应用,围绕前端里程计、后端优化和回环检测技术,对国内外相关研究进行综述。考虑到单一传感器的局限性,结合目前多传感器融合研究的热点与难点,展望了自动驾驶多传感器融合SLAM技术在自动驾驶领域的机遇与挑战。展开更多
同步定位与建图(Simultaneous Localization and Mapping,SLAM)是移动机器人与智能车辆实现环境感知、实时定位的关键技术。随着科技的不断发展,具有便携、扫描范围广等优势的手持旋轴激光雷达应用愈加广泛。为了解决手持旋轴激光雷达...同步定位与建图(Simultaneous Localization and Mapping,SLAM)是移动机器人与智能车辆实现环境感知、实时定位的关键技术。随着科技的不断发展,具有便携、扫描范围广等优势的手持旋轴激光雷达应用愈加广泛。为了解决手持旋轴激光雷达在运行过程中由于旋转引起的特征点稀疏导致定位建图质量差的问题,提出一种改进的SLAM算法。在LIO-SAM算法的基础上计算了一种表征点云强度信息的特征点,在提取几何特征边缘点与平面点时,将周围强度值变化较大的点作为一种新的特征点引入点云匹配。同时,通过实时判断系统是否存在退化风险,从而动态调整滤波数值设置,保证了系统运行的稳定性。实验结果表明,在手持旋轴激光雷达采集的户外场景数据下,经过改进的SLAM算法相比LIO-SAM算法有更好的定位与建图效果。展开更多
针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM...针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.展开更多
视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基...视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。展开更多
针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算...针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。展开更多
机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM...机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM算法复杂且运算量大,基于通用芯片方案实现存在延时长、功耗高的问题,不能满足自主移动机器人,尤其是小型、微型、纳型机器人的实时性、体积和功耗需求。因此,设计专用芯片加速计算密集的SLAM算法在近年来受到学术界和产业界的高度关注。本文首先从SLAM技术的基本概念和应用场景出发介绍了SLAM算法需要硬件加速的必要性,接着从算法和专用芯片设计两个角度出发梳理了SLAM技术的研究现状与发展趋势,接着重点讨论了SLAM专用芯片研究的技术挑战与解决方案,对未来发展给出了建议。展开更多
针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measure...针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measurement unit,IMU)预积分对视觉进行初始化,通过约束的滑窗优化和视觉里程计的高频位姿,将传统雷达匀速运动模型改进为多阶段匀加速模型,从而降低点云畸变.同时,利用列文伯格-马夸尔特(Levenberg-Marquardt,LM)方法优化激光里程计,提出一种融合词袋模型的回环检测方法,最终实现三维地图构建.基于实车试验数据,通过与LEGO-LOAM(lightweight and ground-optimized lidar odometry and mapping on variable terrain)方法的结果对比,本文方法在平均误差和误差中位数上分别提升了16%和23%.展开更多
激光雷达技术的突破与惯性导航系统的完善使激光扫描设备在测绘领域表现出色。该设备已成为构建高效、精准三维模型的关键工具,广受认可,被广泛应用于各类工程测绘项目。它能迅速捕获三维坐标点、反射率及纹理等关键信息,以点云形式存储...激光雷达技术的突破与惯性导航系统的完善使激光扫描设备在测绘领域表现出色。该设备已成为构建高效、精准三维模型的关键工具,广受认可,被广泛应用于各类工程测绘项目。它能迅速捕获三维坐标点、反射率及纹理等关键信息,以点云形式存储,为构建建筑物三维模型提供坚实数据。针对市场局限,研发了即时定位与建图(Simultaneous Localization and Mapping,SLAM)方法,实现大型异构建筑室内外三维建模,并通过案例验证其高度可行性与可靠性,为相关行业提供技术支持,为类似工程提供全面解决方案,对测绘行业产生深远影响。展开更多
SLAM的全称为Simultaneous Localization And Mapping即“同时定位与地图构建”。最近几年由于机器人、无人机、自动驾驶、AI、VR和AR技术的发展,SLAM技术逐渐被人们熟知。SLAM技术是通过激光传感器感知周围的环境,并将不同时刻感知的...SLAM的全称为Simultaneous Localization And Mapping即“同时定位与地图构建”。最近几年由于机器人、无人机、自动驾驶、AI、VR和AR技术的发展,SLAM技术逐渐被人们熟知。SLAM技术是通过激光传感器感知周围的环境,并将不同时刻感知的环境进行匹配套合,从而反推本体在环境中的位置及运动轨迹。随着SLAM技术的设备及定位精度的提高,该技术逐渐在测绘行业中使用,迅速成为除RTK和全站仪采点成图之外的一种地形图成图手段。国外GeoSLAM等公司推出大量的产品,在该领域处于领先地位,为打破国外封锁,国内的飞马、数字绿土等公司也研发出相应的产品。该文主要通过具体的案例论述国产手持激光雷达扫描仪飞马SLAM 100在地形测绘中的运用,侧重于表述SLAM技术及SLAM100产品在运用中的优缺点。展开更多
文摘同步定位与建图(Simultaneous Localization and Mapping,SLAM)技术可使自动驾驶车辆在未知环境中根据车载传感器采集到的数据估计自身位姿,建立环境地图,为车辆的规划、决策提供定位信息,是近年来自动驾驶技术研究的热点之一。基于车载激光雷达的点云数据,聚焦SLAM技术在自动驾驶领域的应用,围绕前端里程计、后端优化和回环检测技术,对国内外相关研究进行综述。考虑到单一传感器的局限性,结合目前多传感器融合研究的热点与难点,展望了自动驾驶多传感器融合SLAM技术在自动驾驶领域的机遇与挑战。
文摘同步定位与建图(Simultaneous Localization and Mapping,SLAM)是移动机器人与智能车辆实现环境感知、实时定位的关键技术。随着科技的不断发展,具有便携、扫描范围广等优势的手持旋轴激光雷达应用愈加广泛。为了解决手持旋轴激光雷达在运行过程中由于旋转引起的特征点稀疏导致定位建图质量差的问题,提出一种改进的SLAM算法。在LIO-SAM算法的基础上计算了一种表征点云强度信息的特征点,在提取几何特征边缘点与平面点时,将周围强度值变化较大的点作为一种新的特征点引入点云匹配。同时,通过实时判断系统是否存在退化风险,从而动态调整滤波数值设置,保证了系统运行的稳定性。实验结果表明,在手持旋轴激光雷达采集的户外场景数据下,经过改进的SLAM算法相比LIO-SAM算法有更好的定位与建图效果。
文摘针对单一传感器SLAM(Simultaneous Localization And Mapping)技术在复杂环境中存在精度低、可靠性差等问题,提出一种基于因子图消元优化的激光雷达、视觉和IMU(Inertial Measurement Unit)融合SLAM算法(Multi Factor Graph fusion SLAM with IMU as the Dominant system,ID-MFG-SLAM).首先,采用多因子图模型,提出以IMU为主系统,视觉与激光雷达为辅系统,通过引入辅系统观测因子约束IMU偏差,并接收IMU里程计因子实现运动预测与融合的全新结构.之后,为降低融合后的优化成本,加入滑窗机制并设计基于Householder变换的QR分解消元法将因子图转换为贝叶斯网络.最后,引入一种球面线性插值与线性插值之间的自适应插值算法,将激光雷达点云投影到单位球体上实现视觉特征点深度估计.实验结果表明,相比其他经典算法,该方法在复杂大、小场景中绝对轨迹误差分别可达到约0.68 m和0.24 m,具有更高的精度和可靠性.
文摘视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。
文摘针对现有的激光里程计在面临室外大场景建图时,普遍会出现定位精度低、鲁棒性差的问题,提出一种16线激光雷达和惯性测量单元(inertial measurement unit, IMU)紧耦合的同时定位与建图(simultaneous localization and mapping, SLAM)算法。首先,对IMU进行估计位姿,通过线性插值矫正激光点云的运动畸变;其次,通过曲率提取场景特征,并根据不同特征性质进行分类;再次,利用帧间匹配模块在滑动窗口内构建局部地图;最后,利用帧与局部地图匹配得到的距离和IMU数据构建联合优化函数。借助KITTI数据集和自行录制的园区数据集,对改进算法与主流的Lego-LOAM和同样使用紧耦合方案的LIO-Mapping进行分模块和整个系统的精度评定。实测结果表明,在符合里程计实时性的要求下,改进激光里程计精度高于Lego-LOAM和LIO-Mapping方案。
文摘机器人是新质生产力的革命性引擎,正在重塑人类的生活和工作。同步定位与建图技术(Simultaneous Localization And Mapping,SLAM)能够使机器人在未知环境中自主导航并构建周围环境的地图,是自主移动机器人实现智能化的基石。然而,SLAM算法复杂且运算量大,基于通用芯片方案实现存在延时长、功耗高的问题,不能满足自主移动机器人,尤其是小型、微型、纳型机器人的实时性、体积和功耗需求。因此,设计专用芯片加速计算密集的SLAM算法在近年来受到学术界和产业界的高度关注。本文首先从SLAM技术的基本概念和应用场景出发介绍了SLAM算法需要硬件加速的必要性,接着从算法和专用芯片设计两个角度出发梳理了SLAM技术的研究现状与发展趋势,接着重点讨论了SLAM专用芯片研究的技术挑战与解决方案,对未来发展给出了建议。
文摘针对激光雷达非匀速运动畸变问题,提出一种融合视觉惯性里程计和激光雷达里程计,进行三维地图构建与定位(simultaneous localization and mapping,SLAM)方法.经预处理和时间戳对齐后的数据,应用视觉估计和惯性测量单元(inertial measurement unit,IMU)预积分对视觉进行初始化,通过约束的滑窗优化和视觉里程计的高频位姿,将传统雷达匀速运动模型改进为多阶段匀加速模型,从而降低点云畸变.同时,利用列文伯格-马夸尔特(Levenberg-Marquardt,LM)方法优化激光里程计,提出一种融合词袋模型的回环检测方法,最终实现三维地图构建.基于实车试验数据,通过与LEGO-LOAM(lightweight and ground-optimized lidar odometry and mapping on variable terrain)方法的结果对比,本文方法在平均误差和误差中位数上分别提升了16%和23%.
文摘激光雷达技术的突破与惯性导航系统的完善使激光扫描设备在测绘领域表现出色。该设备已成为构建高效、精准三维模型的关键工具,广受认可,被广泛应用于各类工程测绘项目。它能迅速捕获三维坐标点、反射率及纹理等关键信息,以点云形式存储,为构建建筑物三维模型提供坚实数据。针对市场局限,研发了即时定位与建图(Simultaneous Localization and Mapping,SLAM)方法,实现大型异构建筑室内外三维建模,并通过案例验证其高度可行性与可靠性,为相关行业提供技术支持,为类似工程提供全面解决方案,对测绘行业产生深远影响。
文摘SLAM的全称为Simultaneous Localization And Mapping即“同时定位与地图构建”。最近几年由于机器人、无人机、自动驾驶、AI、VR和AR技术的发展,SLAM技术逐渐被人们熟知。SLAM技术是通过激光传感器感知周围的环境,并将不同时刻感知的环境进行匹配套合,从而反推本体在环境中的位置及运动轨迹。随着SLAM技术的设备及定位精度的提高,该技术逐渐在测绘行业中使用,迅速成为除RTK和全站仪采点成图之外的一种地形图成图手段。国外GeoSLAM等公司推出大量的产品,在该领域处于领先地位,为打破国外封锁,国内的飞马、数字绿土等公司也研发出相应的产品。该文主要通过具体的案例论述国产手持激光雷达扫描仪飞马SLAM 100在地形测绘中的运用,侧重于表述SLAM技术及SLAM100产品在运用中的优缺点。