为了阐释铝合金激光-电弧双面焊激光稳定、压缩电弧的物理机理,采用对比试验的研究方法和红外测温、电弧光谱分析的技术手段,分析激光对电弧作用的物理本质。结果表明,在激光匙孔未穿透条件下,激光形成的大梯度温度场为电弧提供阳极斑...为了阐释铝合金激光-电弧双面焊激光稳定、压缩电弧的物理机理,采用对比试验的研究方法和红外测温、电弧光谱分析的技术手段,分析激光对电弧作用的物理本质。结果表明,在激光匙孔未穿透条件下,激光形成的大梯度温度场为电弧提供阳极斑点是铝合金激光-电弧双面焊电弧稳定、收缩的根本原因,高能量密度的激光热源和高热导率的材料二者不可或缺;而在激光匙孔穿透条件下,光谱分析显示常规钨极惰性气体保护(Tungsten inert gas arc,TIG)焊电弧的Ar谱线强度最高,不锈钢激光-电弧双面焊电弧次之,而铝合金激光-电弧双面焊电弧Ar谱线最弱,这表明铝合金较高的饱和蒸汽压使得激光在匙孔底部产生较多的激光等离子体,为电弧提供了更加容易的导电通道,因而电弧弧根作用于此。展开更多
In order to improve the measurement precision and increase the reliability of the femtosecond laser transient thermoreflectance system, the relative optical path difference between pump and probe beams is prolonged, w...In order to improve the measurement precision and increase the reliability of the femtosecond laser transient thermoreflectance system, the relative optical path difference between pump and probe beams is prolonged, which can improve the fitting accuracy of the experimental data to the theoretical model. A modified experimental setup is devised with the pump path intercalated a moving stage identical to the one in the probe path, which extends the optical path difference of the probe beam relative to the pump beam from 4 to 8 ns. The measured results indicate that the uncertainty from the misalignment and divergence of both beams can be ignored when the last 4 ns experimental data are connected with those of the first 4 ns smoothly. The as-obtained thermal conductance of AI/Si and Cr/Si interfaces agrees well with the reported experimental values, which verifies the reliability of this modified version of this measurement.展开更多
The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high ...The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.展开更多
A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This typ...A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.展开更多
文摘为了阐释铝合金激光-电弧双面焊激光稳定、压缩电弧的物理机理,采用对比试验的研究方法和红外测温、电弧光谱分析的技术手段,分析激光对电弧作用的物理本质。结果表明,在激光匙孔未穿透条件下,激光形成的大梯度温度场为电弧提供阳极斑点是铝合金激光-电弧双面焊电弧稳定、收缩的根本原因,高能量密度的激光热源和高热导率的材料二者不可或缺;而在激光匙孔穿透条件下,光谱分析显示常规钨极惰性气体保护(Tungsten inert gas arc,TIG)焊电弧的Ar谱线强度最高,不锈钢激光-电弧双面焊电弧次之,而铝合金激光-电弧双面焊电弧Ar谱线最弱,这表明铝合金较高的饱和蒸汽压使得激光在匙孔底部产生较多的激光等离子体,为电弧提供了更加容易的导电通道,因而电弧弧根作用于此。
基金The National Basic Research Program of China(973 Program)(No.2011CB707605)the National Natural Science Foundation of China(No.51205061,50925519,51106029)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK2012340)the Ph.D.Programs Foundation of Ministry of Education of China(No.20110092120006)
文摘In order to improve the measurement precision and increase the reliability of the femtosecond laser transient thermoreflectance system, the relative optical path difference between pump and probe beams is prolonged, which can improve the fitting accuracy of the experimental data to the theoretical model. A modified experimental setup is devised with the pump path intercalated a moving stage identical to the one in the probe path, which extends the optical path difference of the probe beam relative to the pump beam from 4 to 8 ns. The measured results indicate that the uncertainty from the misalignment and divergence of both beams can be ignored when the last 4 ns experimental data are connected with those of the first 4 ns smoothly. The as-obtained thermal conductance of AI/Si and Cr/Si interfaces agrees well with the reported experimental values, which verifies the reliability of this modified version of this measurement.
文摘The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.
基金supported by National Basic Research Program of China(Grant No.2010CB923202)
文摘A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.