VPPA-MIG复合焊集VPPA穿透力强和MIG焊熔敷效率高的优点,弥补了单VPPA焊工艺区间窄且需立焊和MIG焊熔深浅的不足.使用Red Lake Y4高速摄像获取6 mm厚2A12铝合金VPPA-MIG复合焊接熔池图像,建立了熔池受力模型.对比分析了复合热源不同能...VPPA-MIG复合焊集VPPA穿透力强和MIG焊熔敷效率高的优点,弥补了单VPPA焊工艺区间窄且需立焊和MIG焊熔深浅的不足.使用Red Lake Y4高速摄像获取6 mm厚2A12铝合金VPPA-MIG复合焊接熔池图像,建立了熔池受力模型.对比分析了复合热源不同能量配比对焊缝成形和熔池形貌的影响及VPPA-MIG与单MIG焊缝成形特点.结果表明,VPPA-MIG复合热源相比单VPPA热源易保持焊缝成形稳定性.VPPA电流接近穿孔阈值时,配合较低功率MIG热源可以获得6 mm厚2A12铝合金良好焊缝成形;VPPA能量比例过低时,小孔较浅,熔化效率较低,不能起到增加熔深的作用;VPPA能量比例过大,易使熔池失稳,焊缝成形不良.热源输入功率相同时,VPPA-MIG复合焊比MIG焊显著增加焊缝熔深和深宽比,提高生产效率.展开更多
文摘VPPA-MIG复合焊集VPPA穿透力强和MIG焊熔敷效率高的优点,弥补了单VPPA焊工艺区间窄且需立焊和MIG焊熔深浅的不足.使用Red Lake Y4高速摄像获取6 mm厚2A12铝合金VPPA-MIG复合焊接熔池图像,建立了熔池受力模型.对比分析了复合热源不同能量配比对焊缝成形和熔池形貌的影响及VPPA-MIG与单MIG焊缝成形特点.结果表明,VPPA-MIG复合热源相比单VPPA热源易保持焊缝成形稳定性.VPPA电流接近穿孔阈值时,配合较低功率MIG热源可以获得6 mm厚2A12铝合金良好焊缝成形;VPPA能量比例过低时,小孔较浅,熔化效率较低,不能起到增加熔深的作用;VPPA能量比例过大,易使熔池失稳,焊缝成形不良.热源输入功率相同时,VPPA-MIG复合焊比MIG焊显著增加焊缝熔深和深宽比,提高生产效率.