The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to...The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.展开更多
By using the normal ordering method, we study the state evolution of an optically driven excitons in a quantum well immersed in a leaky cavity, which was introduced by Yu-Xi Liu et al. [Phys. Rev. A 63 (2001) 033816]....By using the normal ordering method, we study the state evolution of an optically driven excitons in a quantum well immersed in a leaky cavity, which was introduced by Yu-Xi Liu et al. [Phys. Rev. A 63 (2001) 033816]. The influence of the external laser field on the quantum decoherence of a mesoscopically superposed state of the excitons is investigated. Our result shows that, the classical field can compensate the energy dissipation of the excitons. Although the decoherence rate of the excitonic Schr?dinger cat state does not depend on the external field, the phase of the decoherence factor can be well controlled by adjusting the amplitude of the external field as well as the detuning between the field and the transition frequency of the atom.展开更多
We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fie...We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields. Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.展开更多
In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc ph...In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc phthalocyanine-fullerene(ZnPcC_(60))dyad with 6-6 and 5-6 configurations.In the former,the initially populated locally excited(LE)state of ZnPc is the lowest S1 state and thus,its subsequent charge separation is relatively slow.In contrast,in the latter,the S1 state is the LE state of C_(60)while the LE state of ZnPc is much higher in energy.There also exist several charge-transfer(CT)states between the LE states of ZnPc and C_(60).Thus,one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C_(60).These points are verified in dynamics simulations.In the first 200 fs,there is a rapid excitation energy transfer from ZnPc to C_(60),followed by an ultrafast charge separation to form a CT intermediate state.This process is mainly driven by hole transfer from C_(60)to ZnPc.The present work demonstrates that different bonding patterns(i.e.5-6 and 6-6)of the C−N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C_(60)dyads.Methodologically,it is proven that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads,organometallic molecules,quantum dots,nanoclusters,etc.展开更多
The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the...The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schroedinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.展开更多
Based on the quark-gluon contents of nucleon and strongly believing that the force mediators,Pomeronand its counterpart in the conventional approach of Regge theory,for high energy diffractive process would be the ten...Based on the quark-gluon contents of nucleon and strongly believing that the force mediators,Pomeronand its counterpart in the conventional approach of Regge theory,for high energy diffractive process would be the tensorglueball and Odderon respectively,we discuss photo-production of vector meson φ off the deuteron at energy less than 3GeV in the QCD inspired model in which the quark gluon degrees of freedom and glueball,Odderon exchange are takeninto account.A calculation is performed for γ + D →φ + D,and the theoretical predictions of the differential crosssection dσ^(γD)) /dt,are presented and compared with available experimental data.Our QCD inspired model reproducesdata quite well in the whole range of the experimental measurements up to |t| ■0.4 GeV.Our results can be used toextract γn→φn data,which cannot be measured in experiment.展开更多
To evaluate the performance of newly designed electro-pneumatic valves (EPVs) for the air-powered engine (APE) and study laws of parameters affecting them, a simulation model was established based on the thermodynamic...To evaluate the performance of newly designed electro-pneumatic valves (EPVs) for the air-powered engine (APE) and study laws of parameters affecting them, a simulation model was established based on the thermodynamics and mechanics theories. Experiments were set up to determine the instantaneous effective orifice area of solenoid valve by the constant volume discharge method. The simulation model was also validated by comparing the measured displacement curve with the simulated displacement curve of the valve in the pressure of 0.16 and 0.49 MPa. Simulation and experimental results showed that maximum working frequency of the designed EPV could reach 30 Hz corresponding to 2000 r/min of engine rotating speed. Based on simulation results, impacts of temperature and pressure of control air on delay time, full opening/closing time and seating velocity of EPV were analyzed. The simulation model could also act as EPV simulation prototype in designing the air exchange control system of APE.展开更多
This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Pr...This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.展开更多
Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calc...Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.展开更多
Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient...Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient absorption spectroscopy.The electronic absorption spectrum of the PbS QDs features broad absorption in the entire near IR-vis-UV region with a monotonic increase in intensity towards shorter wavelength.Relative to PbS,the absorption of the core/shell PbS/CdS QDs shows a slight blue shift in the 600?800 nm region,due to the decrease of the PbS crystal size caused by the synthetic process of the core/shell structure,and increased absorption near 400 nm due to the CdS shell.The PL of the PbS/CdS QDs was ~2.6 times more intense than that of the PbS QDs,due to surface passivation of PbS by CdS,and blue-shifted,attributable to smaller PbS size and thereby stronger quantum confinement in the core/shell QDs.Fs transient absorption measurements of both systems showed a strong transient absorption feature from 600 to 750 nm following excitation at 750 nm.The transient absorption decays can be fit to a biexponential with time constants of 8 and 100 ps for PbS and 6 and 80 ps for PbS/CdS.The amplitude and lifetime of the fast component were excitation intensity dependent,with the amplitude increasing more than linearly with increasing excitation intensity and the lifetime decreasing with increasing intensity.The fast decay is attributed to exciton-exciton annihilation and it occurs more readily for the PbS/CdS than the PbS QDs,which is attributed to a lower density of trap states in the core/shell QDs,as supported by their stronger PL.展开更多
基金Project(51301209) supported by the National Natural Science Foundation of ChinaProject(201191107) supported by Science and Technology Plan of Xinjiang Province,China
文摘The flow stress behavior of high-purity Al-Cu-Mg alloy under hot deformation conditions was studied by Gleeble-1500,with the deformation temperature range from 300 to 500 °C and the strain rate range from 0.01 to 10 s-1. From the true stress-true strain curve, the flow stress increases with the increasing of strain and tends to be constant after a peak value, showing dynamic recover, and the peak value of flow stress increases with the decreasing of deformation temperature and the increasing of strain rate.When the strain rate is 10 s-1 and the deformation temperature is higher than 400 °C, the flow stress shows dynamic recrystallization characteristic. TEM micrographs were used to reveal the evolution of microstructures. According to the processing map at true strain of 0.7, the feasible deformation conditions are high strain rate(>0.5 s-1) or 440-500 °C and 0.01-0.02 s-1.
文摘By using the normal ordering method, we study the state evolution of an optically driven excitons in a quantum well immersed in a leaky cavity, which was introduced by Yu-Xi Liu et al. [Phys. Rev. A 63 (2001) 033816]. The influence of the external laser field on the quantum decoherence of a mesoscopically superposed state of the excitons is investigated. Our result shows that, the classical field can compensate the energy dissipation of the excitons. Although the decoherence rate of the excitonic Schr?dinger cat state does not depend on the external field, the phase of the decoherence factor can be well controlled by adjusting the amplitude of the external field as well as the detuning between the field and the transition frequency of the atom.
基金The project supported in part by the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2005062
文摘We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields. Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.
基金support from the National Natural Science Foundation of China(No.21688102,No.21590801,and No.21520102005)support from Sichuan Science and Technology Program Grant(2020YJ0161)。
文摘In this work,we employ electronic structure calculations and nonadiabatic dynamics simulations based on many-body Green function and BetheSalpeter equation(GW/BSE)methods to study excited-state properties of a zinc phthalocyanine-fullerene(ZnPcC_(60))dyad with 6-6 and 5-6 configurations.In the former,the initially populated locally excited(LE)state of ZnPc is the lowest S1 state and thus,its subsequent charge separation is relatively slow.In contrast,in the latter,the S1 state is the LE state of C_(60)while the LE state of ZnPc is much higher in energy.There also exist several charge-transfer(CT)states between the LE states of ZnPc and C_(60).Thus,one can see apparent charge separation dynamics during excited-state relaxation dynamics from the LE state of ZnPc to that of C_(60).These points are verified in dynamics simulations.In the first 200 fs,there is a rapid excitation energy transfer from ZnPc to C_(60),followed by an ultrafast charge separation to form a CT intermediate state.This process is mainly driven by hole transfer from C_(60)to ZnPc.The present work demonstrates that different bonding patterns(i.e.5-6 and 6-6)of the C−N linker can be used to tune excited-state properties and thereto optoelectronic properties of covalently bonded ZnPc-C_(60)dyads.Methodologically,it is proven that combined GW/BSE nonadiabatic dynamics method is a practical and reliable tool for exploring photoinduced dynamics of nonperiodic dyads,organometallic molecules,quantum dots,nanoclusters,etc.
基金The project partially supported by National Natural Science Foundation of China under Grant No.10247008 and the Science Foundation of Northwest Normal University of China under Grant No. NWNU-KJCXGC-02-04
文摘The Schroedinger equation involving the phenomenon of the localization and entanglement for an exciton in a quantum dot molecule by an ac electric field is analytically investigated. New exact series solutions for the Schroedinger equation have been obtained for the first time. The analytical expressions can further describe the dynamical behaviors of an interacting electron-hole pair in a double coupled quantum dot molecule under an ac electric field accurately.
基金Supported by National Natural Science Foundation of China under Grant Nos.10647002 and 10565001
文摘Based on the quark-gluon contents of nucleon and strongly believing that the force mediators,Pomeronand its counterpart in the conventional approach of Regge theory,for high energy diffractive process would be the tensorglueball and Odderon respectively,we discuss photo-production of vector meson φ off the deuteron at energy less than 3GeV in the QCD inspired model in which the quark gluon degrees of freedom and glueball,Odderon exchange are takeninto account.A calculation is performed for γ + D →φ + D,and the theoretical predictions of the differential crosssection dσ^(γD)) /dt,are presented and compared with available experimental data.Our QCD inspired model reproducesdata quite well in the whole range of the experimental measurements up to |t| ■0.4 GeV.Our results can be used toextract γn→φn data,which cannot be measured in experiment.
文摘To evaluate the performance of newly designed electro-pneumatic valves (EPVs) for the air-powered engine (APE) and study laws of parameters affecting them, a simulation model was established based on the thermodynamics and mechanics theories. Experiments were set up to determine the instantaneous effective orifice area of solenoid valve by the constant volume discharge method. The simulation model was also validated by comparing the measured displacement curve with the simulated displacement curve of the valve in the pressure of 0.16 and 0.49 MPa. Simulation and experimental results showed that maximum working frequency of the designed EPV could reach 30 Hz corresponding to 2000 r/min of engine rotating speed. Based on simulation results, impacts of temperature and pressure of control air on delay time, full opening/closing time and seating velocity of EPV were analyzed. The simulation model could also act as EPV simulation prototype in designing the air exchange control system of APE.
基金the National Natural Science Foundation of China (21290194)
文摘This contribution provides a summary of proposed theoretical and computational studies on excited state dynamics in molecular aggregates, as an important part of the National Natural Science Foundation (NNSF) Major Project entitled "Theoretical study of the low-lying electronic excited state for molecular aggregates". This study will focus on developments of novel methods to simulate excited state dynamics of molecular aggregates, with the aim of understanding several important chemical physics processes, and providing a solid foundation for predicting the opto-electronic properties of organic functional materials and devices. The contents of this study include: (1) The quantum chemical methods for electronic excited state and electronic couplings targeted for dynamics in molecular aggregates; (2) Methods to construct effective Hamiltonian models, and to solve their dynamics using system-bath approaches; (3) Non-adiabatic mixed quantum-classic methods targeted for molecular aggregates; (4) Theoretical studies of charge and energy transfer, and related spectroscopic phenomena in molecular aggregates.
基金Supported by the Council of Scientific and Industrial Research(CSIR),in the Form of Research Project Grant No.03(1341)/15/EMR-Ⅱ and to DST,New DelhiINSPIRE-Fellowship Grant No.DST/INSPIRE/03/2015/000199
文摘Within the framework of the dynamical cluster decay model (DCM), the in evaporation cross-sections (σ1n) of cold fusion reactions (Pb and Bi targets) are calculated for ZCN = 104-113 superheavy nuclei. The calculations are carried out in the fixed range of excitation energy ECN = 15 ± 1 MeV, so that the comparative analysis of reaction dynamics can be worked out. First of all, the fission barriers (Bf ) and neutron separation energies (S1n) are estimated to account the decreasing cross-sections of cold fusion reactions. In addition to this, the importance of hot optimum orientations of β24-deformed nuclei over cold one is explored at fixed angular momentum and neck-length parameters. The hot optimum orientations support all the target-projectile (t,p) combinations, which are explored experimentally in the cold fusion reactions. Some new target-projectile combinations are also predicted for future exploration. Further, the In cross-sections are addressed for ZCN = 104-113 superheavy nuclei at comparable excitation energies which show the decent agrement with experimental data upto ZCN = 109 nuclei. Finally, to understand the dynamics of higher-Z superheavy nuclei, the cross-sections are also calculated at maximum available energies around the Coulomb barrier and the effect of non-sticking moment of inertia (INS) is also investigated at these energies.
基金supported by the Basic Energy Sciences Division of the US DOE (DE-FG02-ER46232)
文摘Optical properties and ultrafast exciton relaxation dynamics in PbS and core/shell PbS/CdS quantum dots(QDs) have been studied using UV-vis absorption and fluorescence spectroscopy as well as femtosecond(fs) transient absorption spectroscopy.The electronic absorption spectrum of the PbS QDs features broad absorption in the entire near IR-vis-UV region with a monotonic increase in intensity towards shorter wavelength.Relative to PbS,the absorption of the core/shell PbS/CdS QDs shows a slight blue shift in the 600?800 nm region,due to the decrease of the PbS crystal size caused by the synthetic process of the core/shell structure,and increased absorption near 400 nm due to the CdS shell.The PL of the PbS/CdS QDs was ~2.6 times more intense than that of the PbS QDs,due to surface passivation of PbS by CdS,and blue-shifted,attributable to smaller PbS size and thereby stronger quantum confinement in the core/shell QDs.Fs transient absorption measurements of both systems showed a strong transient absorption feature from 600 to 750 nm following excitation at 750 nm.The transient absorption decays can be fit to a biexponential with time constants of 8 and 100 ps for PbS and 6 and 80 ps for PbS/CdS.The amplitude and lifetime of the fast component were excitation intensity dependent,with the amplitude increasing more than linearly with increasing excitation intensity and the lifetime decreasing with increasing intensity.The fast decay is attributed to exciton-exciton annihilation and it occurs more readily for the PbS/CdS than the PbS QDs,which is attributed to a lower density of trap states in the core/shell QDs,as supported by their stronger PL.