移动群智感知系统(MCS)能否高效地运行,很大程度上取决于是否有大量任务参与者参与到感知任务中。然而在现实中,用户的感知成本增加以及用户的隐私泄露等原因,导致用户的参与积极性不高,因此需要一种有效的手段,用于在保证用户隐私安全...移动群智感知系统(MCS)能否高效地运行,很大程度上取决于是否有大量任务参与者参与到感知任务中。然而在现实中,用户的感知成本增加以及用户的隐私泄露等原因,导致用户的参与积极性不高,因此需要一种有效的手段,用于在保证用户隐私安全的同时,还能促进用户积极地参与到任务中。针对上述问题,结合本地化差分隐私保护技术,提出了一种基于综合评分的双边拍卖隐私激励机制(Privacy Incentive Mechanism of Bilateral Auction with Comprehensive Scoring, BCS),这种激励机制包括拍卖机制、数据扰动和聚合机制以及奖励和惩罚机制3个部分。拍卖机制综合考虑了各种因素对用户完成感知任务的影响,在一定程度上提高了任务的匹配程度;数据扰动和聚合机制在隐私保护和数据精度之间做出权衡,在保证数据质量的同时做到了对用户隐私的良好保护;奖励和惩罚机制奖励诚信度和活跃度高的用户,激励用户积极参与感知任务。实验结果表明,BCS可以在提高平台收益和任务匹配率的同时保证感知数据的质量。展开更多
文摘移动群智感知系统(MCS)能否高效地运行,很大程度上取决于是否有大量任务参与者参与到感知任务中。然而在现实中,用户的感知成本增加以及用户的隐私泄露等原因,导致用户的参与积极性不高,因此需要一种有效的手段,用于在保证用户隐私安全的同时,还能促进用户积极地参与到任务中。针对上述问题,结合本地化差分隐私保护技术,提出了一种基于综合评分的双边拍卖隐私激励机制(Privacy Incentive Mechanism of Bilateral Auction with Comprehensive Scoring, BCS),这种激励机制包括拍卖机制、数据扰动和聚合机制以及奖励和惩罚机制3个部分。拍卖机制综合考虑了各种因素对用户完成感知任务的影响,在一定程度上提高了任务的匹配程度;数据扰动和聚合机制在隐私保护和数据精度之间做出权衡,在保证数据质量的同时做到了对用户隐私的良好保护;奖励和惩罚机制奖励诚信度和活跃度高的用户,激励用户积极参与感知任务。实验结果表明,BCS可以在提高平台收益和任务匹配率的同时保证感知数据的质量。