The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1...The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0),[15.69]^3∑0^-(v′=0-4)-X^3∑0^-(v″=0),and [15.81]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0).Spectroscopic constants for the three newly identified electronically excited states have been determined for the first time. In addition,the lifetimes for most observed vibronic bands have also been measured.展开更多
The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic struc...The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.G2007CB815203), and the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘The laser-induced fluorescence excitation spectrum of jet-cooled NiS molecule has been recorded in the energy range of 15500 17200 cm-1. Fifteen bands have been assigned as three transition progressions:[15.65]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0),[15.69]^3∑0^-(v′=0-4)-X^3∑0^-(v″=0),and [15.81]^3Ⅱ1(v′=0-4)-X^3∑0^-(v″=0).Spectroscopic constants for the three newly identified electronically excited states have been determined for the first time. In addition,the lifetimes for most observed vibronic bands have also been measured.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20733005, No.20673126, and No.20973179), the National Basic Research Program of China (No.2007CB815200 and No.2007AA02Z116), and the Chinese Academy of Sciences.
文摘The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.