Various single crystalline IIB-VIA one-dimensional nanostructures have been fabricated using thermal evaporation. Although these nanostructures possess large amount of unpassivated surface, it does not lead to dissoci...Various single crystalline IIB-VIA one-dimensional nanostructures have been fabricated using thermal evaporation. Although these nanostructures possess large amount of unpassivated surface, it does not lead to dissociation of excitons, which fact indicates the high purity and high quality of the electronic structure of these nanostructures.展开更多
Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isos...Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.展开更多
文摘Various single crystalline IIB-VIA one-dimensional nanostructures have been fabricated using thermal evaporation. Although these nanostructures possess large amount of unpassivated surface, it does not lead to dissociation of excitons, which fact indicates the high purity and high quality of the electronic structure of these nanostructures.
基金the Teaching & Researching Foundation for Outstanding Teachers of Southeast University
文摘Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.