In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylen...In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.展开更多
Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton...Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton lifetime is prolonged by altering the molecular stacking pattern of the CuPc film.For CuPc thin films,the excited state decays are mainly determined by the triplet-triplet annihilation process.The ultrafast transient absorption measurements indicate that the primary annihilation mechanism is one-dimensional exciton diffusion collision destruction.The decay kinetics show a clearly time-dependent annihilation rate constant withγ∝t^(-1/2).Annihilation rate constants are determined to beγ0=(2.87±0.02)×10^(-20)cm^(3)·s^(-1/2)and(1.42±0.02)×10^(-20)cm^(3)·s^(-1/2)for upright and lyingdown configurations,respectively.Compared to the CuPc thin film with an upright configuration,the thin film with a lying-down configuration shows longer exciton lifetime and higher absorbance,which are beneficial to organic solar cells.The results in this work have important implications on the design and mechanistic understanding of organic optoelectronic devices.展开更多
基金supported by the Research Project for Outstanding Young People in Universities of Anhui Province(No.2023AH030099)the China Postdoctoral Science Foundation(No.2023M733378)+3 种基金the National Natural Science Foundation of China(No.21702042,No.22305059,No.22103010)the National University Students'Innovation and Entrepreneurship Training Program(No.202311059024)the Anhui Provincial Natural Science Foundation(No.2308085QB59)the Anhui Provincial Excellent Scientific Research and Innovation Team(No.2022AH010096).
文摘In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.
基金supported by the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics at Dalian Institute of Chemical Physics,Chinese Academy of Sciences(No.SKLMRD-K202108)。
文摘Photophysical processes occurring within organic semiconductors is important for designing and fabricating organic solar cells.Copper phthalocyanine(CuPc)is a typical electron acceptor.In this work,the triplet exciton lifetime is prolonged by altering the molecular stacking pattern of the CuPc film.For CuPc thin films,the excited state decays are mainly determined by the triplet-triplet annihilation process.The ultrafast transient absorption measurements indicate that the primary annihilation mechanism is one-dimensional exciton diffusion collision destruction.The decay kinetics show a clearly time-dependent annihilation rate constant withγ∝t^(-1/2).Annihilation rate constants are determined to beγ0=(2.87±0.02)×10^(-20)cm^(3)·s^(-1/2)and(1.42±0.02)×10^(-20)cm^(3)·s^(-1/2)for upright and lyingdown configurations,respectively.Compared to the CuPc thin film with an upright configuration,the thin film with a lying-down configuration shows longer exciton lifetime and higher absorbance,which are beneficial to organic solar cells.The results in this work have important implications on the design and mechanistic understanding of organic optoelectronic devices.