The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectrosc...The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectroscopy (2PPE) is associated with the photocatalyzed dissociation of methanol at fivefold coordinated Ti sites (Ti5c) on TiO2 (110) surface [Chem- ical Science 1, 575 (2010)]. To check whether this resonance signal arises from initial or intermediate states, photon energy dependent 2PPE and comparison between one-photon photoemission spectroscopy and 2PPE have been performed. Both results consistently sug- gest the resonance signal originates from the initially unoccupied intermediate states, i.e., excited states. Dispersion measurements suggest the excited state is localized. Time-resolved studies show the lifetime of the excited state is 24 fs. This work presents comprehensive char- acterization of the excited states on methanol/TiO2(110) interface, and provides elaborate experimental data for the development of theoretical methods in reproducing the excited states on TiO2 surfaces and interfaces.展开更多
The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing...The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing new sophisticate TiO2 structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface. In this work, we have examined the photooxidation of methanol on TiO 2 (011)- ( 2 × 1 ) and TiO 2 (110) - (1 ×1) by two-photon photoemission spectroscopy (2PPE). An excited state at 2.5 eV above the Fermi level (EF) on methanol covered (011) and (110) interface has been detected. The excited state is an indicator of reduction of TiO2 interface. Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1) and TiO2(110)-(1× 1) is ascribed to the interface reduction by producing surface hydroxyls. The reaction rate of photooxidation of methanol on TiO2(110)-(1× 1) is about 11.4 times faster than that on TiO2(011)-(2×1), which is tentatively explained by the difference in the surface atomic configuration. This work not only provides a detailed characterization of the electronic structure of methanol/TiO2 interface by 2PPE, but also shows the importance of the surface structure in the photoreactivity on TiO2.展开更多
The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic struc...The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.展开更多
In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylen...In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.展开更多
A simple and efficient approach was presented to enhance up-conversion emissions significantly for the Er:Al2O3 nanocrystals by Mo support (Er-Mo:Al2O3) with a 976 nm laser diode excitation. Mo support had evident...A simple and efficient approach was presented to enhance up-conversion emissions significantly for the Er:Al2O3 nanocrystals by Mo support (Er-Mo:Al2O3) with a 976 nm laser diode excitation. Mo support had evident effects on the phase structure and up-conversion emissions for the Er:Al2O3 nanocrystals, which promoted the θ-(Al,Er)2O3 transformed to α-(Al,Er,Mo)203 phase, Compared with the Er:Al2O3, the maximal green and red up-conversion emissions intensities increased about 3×10^3 and 1.4×10^2 times for the Er-Mo:Al2O3 nanocrystals, respectively. It suggests that the enhancement of up-conversion emissions is caused by the high excited state energy transfer process from [4115/2, 3T2) state of the Er3+-MoO2- dimer to the 4F7/2 level of E3+.展开更多
文摘The electronic structure of methanol/TiO2(ll0) interface has been studied by photoemis- sion spectroscopy. The pronounced resonance which appears at 5.5 eV above the Fermi level in two-photon photoemission spectroscopy (2PPE) is associated with the photocatalyzed dissociation of methanol at fivefold coordinated Ti sites (Ti5c) on TiO2 (110) surface [Chem- ical Science 1, 575 (2010)]. To check whether this resonance signal arises from initial or intermediate states, photon energy dependent 2PPE and comparison between one-photon photoemission spectroscopy and 2PPE have been performed. Both results consistently sug- gest the resonance signal originates from the initially unoccupied intermediate states, i.e., excited states. Dispersion measurements suggest the excited state is localized. Time-resolved studies show the lifetime of the excited state is 24 fs. This work presents comprehensive char- acterization of the excited states on methanol/TiO2(110) interface, and provides elaborate experimental data for the development of theoretical methods in reproducing the excited states on TiO2 surfaces and interfaces.
基金This work was supported the Natural Science Foundation of Liaoning Province (No.2015020242), the National Natural Science Foundation of China (No.21203189 and No.21573225), and the State Key Laboratory of Molecular Reaction Dynamics (No.ZZ- 2014-02).
文摘The crystal phase, morphology and facet significantly influence the catalytic and photocat- alytic activity of TiO2. In view of optimizing the performance of catalysts, extensive efforts have been devoted to designing new sophisticate TiO2 structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface. In this work, we have examined the photooxidation of methanol on TiO 2 (011)- ( 2 × 1 ) and TiO 2 (110) - (1 ×1) by two-photon photoemission spectroscopy (2PPE). An excited state at 2.5 eV above the Fermi level (EF) on methanol covered (011) and (110) interface has been detected. The excited state is an indicator of reduction of TiO2 interface. Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1) and TiO2(110)-(1× 1) is ascribed to the interface reduction by producing surface hydroxyls. The reaction rate of photooxidation of methanol on TiO2(110)-(1× 1) is about 11.4 times faster than that on TiO2(011)-(2×1), which is tentatively explained by the difference in the surface atomic configuration. This work not only provides a detailed characterization of the electronic structure of methanol/TiO2 interface by 2PPE, but also shows the importance of the surface structure in the photoreactivity on TiO2.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20733005, No.20673126, and No.20973179), the National Basic Research Program of China (No.2007CB815200 and No.2007AA02Z116), and the Chinese Academy of Sciences.
文摘The product channels and mechanisms of the C2HC12+O2 reaction are investigated by step-scan time-resolved Fourier transform infrared emission spectroscopy and the G3MP2// B3LYP/6-311G(d,p) level of electronic structure calculations. Vibrationally excited products of HCI, CO, and CO2 are observed in the IR emission spectra and the product vibrational state distribution are determined which shows that HCI and CO are vibrationally excited with the nascent average vibrational energy estimated to be 59.8 and 51.8 kJ/mol respectively. In combination with the G3MP2//B3LYP/6-311G(d,p) calculations, the reaction mechanisms have been characterized and the energetically favorable reaction pathways have been suggested.
基金supported by the Research Project for Outstanding Young People in Universities of Anhui Province(No.2023AH030099)the China Postdoctoral Science Foundation(No.2023M733378)+3 种基金the National Natural Science Foundation of China(No.21702042,No.22305059,No.22103010)the National University Students'Innovation and Entrepreneurship Training Program(No.202311059024)the Anhui Provincial Natural Science Foundation(No.2308085QB59)the Anhui Provincial Excellent Scientific Research and Innovation Team(No.2022AH010096).
文摘In this study,diodo boron dipyrromethene(BODIPY)is employed a8 the energy donor and 3,4,9,10-perylene tetracarboxylic dianhydride(PDA)as the energy acceptor,enabling the synthesis of two new compounds:a BODIPY-perylene dyad named P1,and a triad named P2.To investigate the impact of the energy donor on the photophysical processes of the system,P1 comprises one diodo-BODIPY unit and one PDA unit,whereas P2 contains two diodo-BODIPY moieties and one PDA unit.Due to the good spectral complementarity between diiodo-BODIPY and PDA,these two compounds exhibit excellent light-harvesting capabilities in the 400-620 nm range.Steady-state fluorescence spectra demonstrate that when preferentially exciting the diodo-BODIPY moiety,it can effectively transfer energy to PDA;when selectively exciting the PDA moiety,quenching of PDA fluorescence is observed in both P1 and P2.Nanosecond transient absorption results show that both compounds can efficiently generate triplet excited states,which are located on the PDA part.The lifetimes of the triplet states for these two compounds are 103 and 89μs,respectively,significantly longer than that of diiodo-BODIPY.The results from the photooxidation experiments reveal that both P1 and P2 demonstrate good photostability and photooxidation capabilities,with P2 showing superior photooxidative efficiency.The photooxidation rate constant for P2 is 1.3 times that of P1,and its singlet oxygen quantum yield is 1.6 times that of P1.The results obtained here offer valuable insights for designing new photosensitizers.
基金supported by the National Natural Science Foundation of China (Grant No. 11004021)the Fundamental Research Funds for the Central Universities (Grant Nos. DC12010117 and DC120101174)
文摘A simple and efficient approach was presented to enhance up-conversion emissions significantly for the Er:Al2O3 nanocrystals by Mo support (Er-Mo:Al2O3) with a 976 nm laser diode excitation. Mo support had evident effects on the phase structure and up-conversion emissions for the Er:Al2O3 nanocrystals, which promoted the θ-(Al,Er)2O3 transformed to α-(Al,Er,Mo)203 phase, Compared with the Er:Al2O3, the maximal green and red up-conversion emissions intensities increased about 3×10^3 and 1.4×10^2 times for the Er-Mo:Al2O3 nanocrystals, respectively. It suggests that the enhancement of up-conversion emissions is caused by the high excited state energy transfer process from [4115/2, 3T2) state of the Er3+-MoO2- dimer to the 4F7/2 level of E3+.