The transport process of charge density wave (CDW) in a quasi-one dementional conductor can be explained by the Zener tunneling of coherent exciton gas. It is inferred from the model that CDW state is more orderly tha...The transport process of charge density wave (CDW) in a quasi-one dementional conductor can be explained by the Zener tunneling of coherent exciton gas. It is inferred from the model that CDW state is more orderly than normal electron state. The phase transition changing into normal electron state from CDW state is of second order without impurities and of first one with impurities.展开更多
Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet op...Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet optics. We measured the characteris- tics of ions from tin plasma by the time of flight method with a frequency-doubled Nd: YAG laser at the intensity of 3.5x1010 W/cm2 (532 nm, 8 ns). Our measurement shows that the maximum and peak of tin ions energies from plasma under the above experimental parameters are about 4.2 and 1.8 keV, respectively. Moreover, it is found that kinetic energy angular distribution of tin ions can be fitted by cos0.8(θ), where θ is the angle with respect to the target normal. We also investigated the mitigation effect of argon, helium gases to the tin ions, and found that tin ions from the plasma can be mitigated effectively at the pressure -38 mTorr for argon or -375 mTorr for helium, respectively.展开更多
This study demonstrates the potential for shock wave-boundary layer interaction control in air by plasma aerodynamic actuation.Experimental investigations on shock wave-boundary layer interactions control by plasma ae...This study demonstrates the potential for shock wave-boundary layer interaction control in air by plasma aerodynamic actuation.Experimental investigations on shock wave-boundary layer interactions control by plasma aerodynamic actuation are conducted in a Mach 3 in-draft air tunnel.Schlieren imaging shows that the discharges cause the oblique shock to move forward.Schlieren imaging and static pressure probes also show that separation phenomenon shifts backward and the size of separation is enlarged when plasma aerodynamic actuation is applied.The intensity of shock wave is weakened through wall pressure probe.Furthermore,numerical investigations on shock wave-boundary layer interactions control are conducted with plasma aerodynamic actuation.The discharge is modeled as a steady volumetric heat source which is integrated into the energy equation.The input energy level is about 7 kW through discharge process.Results show that the separation phenomenon shifts backward and the intensity of shock is reduced with plasma actuation.These numerical results are consistent with the experimental results.展开更多
According to the mechanism of the arc plasma heating effect,and from a phenomenological perspective of view,the plasma actuation was simplified as heating energy injected into the supersonic flow field for the numeric...According to the mechanism of the arc plasma heating effect,and from a phenomenological perspective of view,the plasma actuation was simplified as heating energy injected into the supersonic flow field for the numerical research on controlling detached shock of the blunt body in non-center symmetrical positions.Besides,experimental research on the form and strength of detached shock wave control by plasma aerodynamic actuation in non-center symmetrical positions was conducted in a high-speed shock tunnel(M=2).The results showed that the detached distance of shock wave increased and the strength of normal shock wave ahead of the detached shock wave reduced when plasma actuation was applied.The control effect was greatly improved after the magnetic field was applied and the effect of upwind-direction flow was the best one.When the upwind-direction flow was applied with 1000 V voltage actuation,the distance of detached shock wave would increase from 3.4 to 7.6 mm and the time average strength of normal shock wave was weaken by 5.5%.At last,the mechanism of plasma actuation on controlling the detached shock wave was briefly analyzed.展开更多
Above-threshold ionizations of rare gas atoms excited by polarized femtosecond laser pulses are investigated.The photoelectron momentum spectra are obtained applying the strong-field approximation(SFA) theory.It is fo...Above-threshold ionizations of rare gas atoms excited by polarized femtosecond laser pulses are investigated.The photoelectron momentum spectra are obtained applying the strong-field approximation(SFA) theory.It is found that,distribution of the emitted photoelectrons varies with different polarizations of laser pulses.We have interpreted the relationship between the observed distribution and the laser polarization taking advantage of tunneling ionization theory and simple-man model.The polarization sensitivity indicates that one can easily manipulate the photoelectron distribution by controlling the polarization of the exciting pulse.展开更多
Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however,...Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however, the slope of longitudinal electric field, which plays a key role on electrons acceleration in bubble, changes little. Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent. As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.展开更多
文摘The transport process of charge density wave (CDW) in a quasi-one dementional conductor can be explained by the Zener tunneling of coherent exciton gas. It is inferred from the model that CDW state is more orderly than normal electron state. The phase transition changing into normal electron state from CDW state is of second order without impurities and of first one with impurities.
基金supported by the National Natural Science Foundation ofChina (Grant Nos. 60978014,61178022 and 11074027)the Basic Research Fund from Sci. & Tech. Department of Jilin Province (Grant Nos.20100521,20100168 and 20111812)
文摘Extreme ultraviolet lithography is most promising for the next generation lithography. However, debris from laser-produced plasma, particularly energetic ions, severely decreases the lifetime of extreme ultraviolet optics. We measured the characteris- tics of ions from tin plasma by the time of flight method with a frequency-doubled Nd: YAG laser at the intensity of 3.5x1010 W/cm2 (532 nm, 8 ns). Our measurement shows that the maximum and peak of tin ions energies from plasma under the above experimental parameters are about 4.2 and 1.8 keV, respectively. Moreover, it is found that kinetic energy angular distribution of tin ions can be fitted by cos0.8(θ), where θ is the angle with respect to the target normal. We also investigated the mitigation effect of argon, helium gases to the tin ions, and found that tin ions from the plasma can be mitigated effectively at the pressure -38 mTorr for argon or -375 mTorr for helium, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.51276197,51207169,11372352)
文摘This study demonstrates the potential for shock wave-boundary layer interaction control in air by plasma aerodynamic actuation.Experimental investigations on shock wave-boundary layer interactions control by plasma aerodynamic actuation are conducted in a Mach 3 in-draft air tunnel.Schlieren imaging shows that the discharges cause the oblique shock to move forward.Schlieren imaging and static pressure probes also show that separation phenomenon shifts backward and the size of separation is enlarged when plasma aerodynamic actuation is applied.The intensity of shock wave is weakened through wall pressure probe.Furthermore,numerical investigations on shock wave-boundary layer interactions control are conducted with plasma aerodynamic actuation.The discharge is modeled as a steady volumetric heat source which is integrated into the energy equation.The input energy level is about 7 kW through discharge process.Results show that the separation phenomenon shifts backward and the intensity of shock is reduced with plasma actuation.These numerical results are consistent with the experimental results.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51276197,51207169)
文摘According to the mechanism of the arc plasma heating effect,and from a phenomenological perspective of view,the plasma actuation was simplified as heating energy injected into the supersonic flow field for the numerical research on controlling detached shock of the blunt body in non-center symmetrical positions.Besides,experimental research on the form and strength of detached shock wave control by plasma aerodynamic actuation in non-center symmetrical positions was conducted in a high-speed shock tunnel(M=2).The results showed that the detached distance of shock wave increased and the strength of normal shock wave ahead of the detached shock wave reduced when plasma actuation was applied.The control effect was greatly improved after the magnetic field was applied and the effect of upwind-direction flow was the best one.When the upwind-direction flow was applied with 1000 V voltage actuation,the distance of detached shock wave would increase from 3.4 to 7.6 mm and the time average strength of normal shock wave was weaken by 5.5%.At last,the mechanism of plasma actuation on controlling the detached shock wave was briefly analyzed.
基金Supported by the National Natural Science Foundation of China under Grant No. 11104210
文摘Above-threshold ionizations of rare gas atoms excited by polarized femtosecond laser pulses are investigated.The photoelectron momentum spectra are obtained applying the strong-field approximation(SFA) theory.It is found that,distribution of the emitted photoelectrons varies with different polarizations of laser pulses.We have interpreted the relationship between the observed distribution and the laser polarization taking advantage of tunneling ionization theory and simple-man model.The polarization sensitivity indicates that one can easily manipulate the photoelectron distribution by controlling the polarization of the exciting pulse.
基金Supported by the National Natural Science Foundation of China(NNSFC)under Grant Nos.11175023,10834008the Fundamental Research Funds for the Central Universities(FRFCU)
文摘Bubble core fields as well bubble shape modification due to the nondepleted electrons inside the bubble is investigated theoretically. It is found that the Mope of transverse fields are reduced significantly, however, the slope of longitudinal electric field, which plays a key role on electrons acceleration in bubble, changes little. Moreover a modified longitudinal compressed bubble shape leads to a shorter dephasing distance which makes the electrons acceleration energy reduced to some extent. As a comparison we perform particle-in-cell simulations whose results are consistent with that of our theoretical consideration.