In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a sho...In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a shock tube experiment.In this work,two-dimensional simulations considering detailed chemistry and transport are conducted to investigate the shock bifurcation and non-uniform ignition behind a retlected shock.The objectives are to interpret the formation of shock bifurcation induced by the reflected shock and boundary layer interaction and to investigate the weak ignition and its transition to strong ignition for both hydrogen and dimethyl ether.It is found that the non-uniform reflection of the incident shock at the end wall produces a wedge-shaped oblique shock foot at the wall.The wedge-shaped structure results in strong interactions between reflected shock and boundary layer,which induces the shock bifurcation.It is demonstrated that the local high-temperature spots at the foot of the bifurcated shock is caused by viscous dissipation and pressure work.As the post-reflected shock temperature increases,the transition from weak ignition to strong ignition in a stoichiometric hydrogen/oxygen mixture is observed.The relative sensitivity of ignition delay time to the post-rellected shock temperature is introduced to characterize the appearance of weak ignition behind the reflected shock.Unlike in the hydrogen/oxygen mixture,weak ignition is not observed in the stoichiometric dimethyl-ether/oxygen mixture since it has a relatively longer ignition delay time and smaller relative sensitivity.展开更多
By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulati...By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.展开更多
The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the a...The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.展开更多
The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is in...The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is inhomogeneous,the effect of medium inhomogeneity on the growth of the mixing zone during the RM instability is still not clear.Therefore,it is necessary to investigate the RM instability in inhomogeneous medium.Based on a high-order computational scheme,the interactions of a density interface with an incident shock wave(ISW)in inhomogeneous medium are numerically simulated by solving the compressible Navier-Stokes equations.The effect of the inhomogeneity on the interface evolution after the passage of ISW through the interface is investigated.The results show that the interface morphology develops in a distinctive "spike-spike"structure in inhomogeneous medium.Particularly,the spike structure on the bottom of the interface is due to the reverse induction of RM instability by curved ISW or reflected shock wave.With the increase of inhomogeneity,the growth rate of the mixing zone width on interface increases,and the wave patterns caused by interaction between the shock wave and interface are more complex.Compared with RM instability in homogeneous medium,the inhomogeneous distribution of the density in medium further enhances the baroclinic effect and induces larger vorticity in flow field.Therefore,the interface is stretched much more significantly under the induction of enhanced vorticity in inhomogeneous medium.Based on above analyses,a model for predicting the growth of mixing zone width on the interface after the passage of ISW is proposed,in order to provide a useful method for evaluations of perturbation growth behavior during the RM instability in inhomogeneous medium.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52006001,and 52176096).
文摘In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a shock tube experiment.In this work,two-dimensional simulations considering detailed chemistry and transport are conducted to investigate the shock bifurcation and non-uniform ignition behind a retlected shock.The objectives are to interpret the formation of shock bifurcation induced by the reflected shock and boundary layer interaction and to investigate the weak ignition and its transition to strong ignition for both hydrogen and dimethyl ether.It is found that the non-uniform reflection of the incident shock at the end wall produces a wedge-shaped oblique shock foot at the wall.The wedge-shaped structure results in strong interactions between reflected shock and boundary layer,which induces the shock bifurcation.It is demonstrated that the local high-temperature spots at the foot of the bifurcated shock is caused by viscous dissipation and pressure work.As the post-reflected shock temperature increases,the transition from weak ignition to strong ignition in a stoichiometric hydrogen/oxygen mixture is observed.The relative sensitivity of ignition delay time to the post-rellected shock temperature is introduced to characterize the appearance of weak ignition behind the reflected shock.Unlike in the hydrogen/oxygen mixture,weak ignition is not observed in the stoichiometric dimethyl-ether/oxygen mixture since it has a relatively longer ignition delay time and smaller relative sensitivity.
基金Supported by the National Natural Science Foundation of China under Grant Nos.51172030,11274052,90921015,and 11174040
文摘By investigating the diffraction of plane waves by a semi-infinite solution for propagating surface plasmons in graphene, which can be excited graphene edge. The theoretical results are confirmed by numerical simulations. excite propagating surface plasmons in graphene where the graphene edge plays graphene layer, we present a rigorous by incident plane waves through the Our results reveal a convenient way to an important role.
基金supported by the National Natural Science Foundation of China(Grant Nos.51576176&91541202)the Fundamental Research Funds for the Central Universities(Grant No.2016FZA4008)the Postdoctoral Science Foundation of China(Grant No.2015M581928)
文摘The problem of shock interaction with a rigid circular cylinder has been investigated using a compressible immersed boundary method coupled with high-order weighted-essentially non-oscillatory(WENO) scheme.First,the accuracy of the developed code is validated.Then,influences of the incident shock Mach number on the flow-field structure and dynamic drag coefficient,as well as time evolution of the flow field are studied.For different shock Mach number,the flow structure shows very different features.At a given dimensionless time,both the normalized shock detachment distance and the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder decreases with increasing shock Mach number.However,location of the upper triple point varies non-monotonically with shock Mach number.For a case with given shock Mach number,the trajectory of the upper triple point and the time evolution of the normalized vertical distance from the highest point of the primary reflected shock to the centerline of the cylinder can both be predicted by linear correlation.Nevertheless,the time evolution of the normalized shock detachment distance is biased to be non-linear.Meanwhile,time evolution of force exerted on the cylinder is quite unsteady for a case with given shock Mach number and given cylinder diameter.For small shock Mach number,there exists a negative valley,and it disappears when the incident shock Mach number increases to a large value,e.g.,1.7.Furthermore,correlations to predict the occurrence of the peak drag and its value under different shock Mach numbers have been proposed.
文摘The growth of mixing zone on an interface induced by Richtmyer-Meshkov(RM)instability occurs frequently in natural phenomena and in engineering applications.Usually,the medium on which the RM instability happens is inhomogeneous,the effect of medium inhomogeneity on the growth of the mixing zone during the RM instability is still not clear.Therefore,it is necessary to investigate the RM instability in inhomogeneous medium.Based on a high-order computational scheme,the interactions of a density interface with an incident shock wave(ISW)in inhomogeneous medium are numerically simulated by solving the compressible Navier-Stokes equations.The effect of the inhomogeneity on the interface evolution after the passage of ISW through the interface is investigated.The results show that the interface morphology develops in a distinctive "spike-spike"structure in inhomogeneous medium.Particularly,the spike structure on the bottom of the interface is due to the reverse induction of RM instability by curved ISW or reflected shock wave.With the increase of inhomogeneity,the growth rate of the mixing zone width on interface increases,and the wave patterns caused by interaction between the shock wave and interface are more complex.Compared with RM instability in homogeneous medium,the inhomogeneous distribution of the density in medium further enhances the baroclinic effect and induces larger vorticity in flow field.Therefore,the interface is stretched much more significantly under the induction of enhanced vorticity in inhomogeneous medium.Based on above analyses,a model for predicting the growth of mixing zone width on the interface after the passage of ISW is proposed,in order to provide a useful method for evaluations of perturbation growth behavior during the RM instability in inhomogeneous medium.