To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the i...To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.展开更多
A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the c...A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.展开更多
Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the...Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the performance of TBMs in those challenging grounds by either improving the capacity of TBMs or developing assisting rock breakage methods.This paper first highlights the challenges of hard and abrasive rocks on TBM tunneling through case studies.It then presents the development of hard rock TBMs and reviews the technologies that can be used individually or as assistance to mechanical excavators to break hard rocks.Emphases are placed on technologies of high pressure waterjet,laser and microwave.The state of the art of field and laboratory research,problems and research directions of those technologies are discussed.The assisting methods are technically feasible;however,the main challenges of using those methods in the field are that the energy consumption can be over 10 times high and that the existing equipments have robustness problems.More research should be conducted to study the overall energy consumption using TBMs and the assisting methods.Pulsed waterjet,laser and microwave technologies should also be developed to make the assistance economically viable.展开更多
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order har...The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.展开更多
It is important to measure wool diameter as the wool quality depends on the fibre diameter D and its deviation CVD. According to IWTO standards, the fibre diameter parameters can be tested with the methods of Airflowm...It is important to measure wool diameter as the wool quality depends on the fibre diameter D and its deviation CVD. According to IWTO standards, the fibre diameter parameters can be tested with the methods of Airflowmeter, DA; Sirolan-Laserscan, DL and CVDL; and OFDA, Do and CVDo. However, these parameters only characterize the average diameter and the variation between the fibres. A single fibre analyzer (SIFAN) can be used to measure fibre profile along the fibre and fibre tensile properties simultaneously. The results obtained from the four methods show that there are i) high relationships between Laserscan values and the results of Airflow, OFDA and SIFAN in the average diameters; ii) correlations between CVDL and CVDo or CVDave; iii) the high correlation between Dave-Dmia but a low correlation between Dave-Dmax; and iv) the relationships between the wool quality and the ratio of Dmln/Dave and Dmin/DL. Based on the results and discussions, the effective measurement of wool diameter should be the SIFAN method. The new parameters of Dmin/DL and Dmin/Dave are the useful value for the evaluation of wool quality in practice.展开更多
The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low mag...The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.展开更多
Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseu...Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.展开更多
In recent years, hysteretic phenomena in fluid flow systems drew attention for their great variety of industrial and engineering applications. When the high-pressure gas is exhausted to atmosphere from the nozzle exit...In recent years, hysteretic phenomena in fluid flow systems drew attention for their great variety of industrial and engineering applications. When the high-pressure gas is exhausted to atmosphere from the nozzle exit, the expanded supersonic jet with the Mach disk is formed at a specific condition. In two-dimensional expanded supersonic jet, the hysteresis phenomenon for the reflection type of shock wave is occurred under the quasi-steady flow and the transitional pressure ratio between the regular reflection and Mach reflection is affected by this phe- nomenon. However, so far, there are very few researches for the hysteretic phenomenon of shock wave in a supersonic internal flow and the phenomenon has not been investigated satisfactorily. The present study was concemed with the experimental and numerical investigations of hysteretic phenomena of shock wave in a supersonic nozzle, and discussed the relationship between hysteresis phenomenon and rate of the change of pressure ratio with time.展开更多
Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tube...Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.展开更多
In usual cases of significant pressure gradients and strong shocks, the front shock takes a fixed location along the wall, at which separation starts. Usually the rear shock is responding to vortex sheding by its defl...In usual cases of significant pressure gradients and strong shocks, the front shock takes a fixed location along the wall, at which separation starts. Usually the rear shock is responding to vortex sheding by its deflection angle. In consequence main shock and rear shocks are moving whilst front shock is stable. The goal of the measurements presented here is to find out how the k-foot behaves during shock oscillations in the case when front shock is not fixed by the pressure gradient. Unsteady shock behaviour is also investigated when air jet vortex generators (AJVG) are used. Counteraction of the separation is directly related to the influence on unsteady processes in the shock wave induced separation.展开更多
Shock tubes are devices in which the state of a gas is changed suddenly from one uniform state to another by the passage of shock and expansion waves.In the theory of ideal shock tube flow,it is customarily assumed th...Shock tubes are devices in which the state of a gas is changed suddenly from one uniform state to another by the passage of shock and expansion waves.In the theory of ideal shock tube flow,it is customarily assumed that the unsteady expansion and shock waves generated by diaphragm rupture are a perfectly centered plane wave.However, such waves are generally not centered,or may not even by plane in practice.In the present research,the time-dependent behavior of homogeneous and heterogeneous condensation of moist air in the shock tube is investigated by using a computational fluid dynamics work.Further,the numerical and experimental studies were carried out in order to investigate the effect of the diaphragm rupture process on the flow characteristics of expansion and shock waves generated near the diaphragm.展开更多
文摘To simulate the actual flowfield at the exit of the supersonic/hypersonic inlet, a wind tunnel is designed to study the flow in the scramjet isolator under the asymmetric incoming flow. And compression fields in the isolator are investigated using wall static and pitot pressure measurements. Three incoming Mach numbers are considered as 1.5, 1.8 and 2. Results show that the increase of the asymmetry of the flow at the isolator entrance leads to the increase of the shock train length in the isolator for a given pressure ratio. Based on the analysis of the flow asymmetry effect at the isolator entrance on the shock train length, a modified correlation is proposed to calculate the length of the shock train. Predicted results of the proposed correlation are in good agreement with the experimental data.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China(20100481141,201104567)the Natural Science Foundation of Jiangsu Province(BK2011723)the Planned Projects for Postdoctoral Research Foundation of Jiangsu Province(0902001C)~~
文摘A hybrid central-upwind scheme is proposed. Two sub-schemes, the central difference scheme and the Roets flux difference splitting scheme, are hybridized by means of a binary sensor function. In order to examine the capability of the proposed hybrid scheme in computing compressible turbulent flow around a curved surface body, especially the flow involving shock wave, three typical eases are investigated by using detached-eddy simulation technique. Numerical results show good agreements with the experimental measurements. The present hybrid scheme can be applied to simulating the compressible flow around a curved surface body involving shock wave and turbulence.
基金Projects(3205009419,3205002001C3)supported by Fundamental Research Funds for Central Universities,China。
文摘Extremely hard and abrasive rocks pose great challenges to the past and ongoing TBM projects by increasing cutter wear and reducing penetration rates.A considerable amount of research has been conducted to improve the performance of TBMs in those challenging grounds by either improving the capacity of TBMs or developing assisting rock breakage methods.This paper first highlights the challenges of hard and abrasive rocks on TBM tunneling through case studies.It then presents the development of hard rock TBMs and reviews the technologies that can be used individually or as assistance to mechanical excavators to break hard rocks.Emphases are placed on technologies of high pressure waterjet,laser and microwave.The state of the art of field and laboratory research,problems and research directions of those technologies are discussed.The assisting methods are technically feasible;however,the main challenges of using those methods in the field are that the energy consumption can be over 10 times high and that the existing equipments have robustness problems.More research should be conducted to study the overall energy consumption using TBMs and the assisting methods.Pulsed waterjet,laser and microwave technologies should also be developed to make the assistance economically viable.
文摘The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper.Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
文摘It is important to measure wool diameter as the wool quality depends on the fibre diameter D and its deviation CVD. According to IWTO standards, the fibre diameter parameters can be tested with the methods of Airflowmeter, DA; Sirolan-Laserscan, DL and CVDL; and OFDA, Do and CVDo. However, these parameters only characterize the average diameter and the variation between the fibres. A single fibre analyzer (SIFAN) can be used to measure fibre profile along the fibre and fibre tensile properties simultaneously. The results obtained from the four methods show that there are i) high relationships between Laserscan values and the results of Airflow, OFDA and SIFAN in the average diameters; ii) correlations between CVDL and CVDo or CVDave; iii) the high correlation between Dave-Dmia but a low correlation between Dave-Dmax; and iv) the relationships between the wool quality and the ratio of Dmln/Dave and Dmin/DL. Based on the results and discussions, the effective measurement of wool diameter should be the SIFAN method. The new parameters of Dmin/DL and Dmin/Dave are the useful value for the evaluation of wool quality in practice.
基金Project supported by the National Key R&D Program of China(Nos.2019YFA0405300 and 2019YFA0405203)the Chinese Scholarship Council(CSC)(No.201903170195)。
文摘The effect of magnetohydrodynamic(MHD)plasma actuators on the control of hypersonic shock wave/turbulent boundary layer interactions is investigated here using Reynolds-averaged Navier-Stokes calculations with low magnetic Reynolds number approximation.A Mach 5 oblique shock/turbulent boundary layer interaction was adopted as the basic configuration in this numerical study in order to assess the effects of flow control using different combinations of magnetic field and plasma.Results show that just the thermal effect of plasma under experimental actuator parameters has no significant impact on the flow field and can therefore be neglected.On the basis of the relative position of control area and separation point,MHD control can be divided into four types and so effects and mechanisms might be different.Amongst these,D-type control leads to the largest reduction in separation length using magnetically-accelerated plasma inside an isobaric dead-air region.A novel parameter for predicting the shock wave/turbulent boundary layer interaction control based on Lorentz force acceleration is then proposed and the controllability of MHD plasma actuators under different MHD interaction parameters is studied.The results of this study will be insightful for the further design of MHD control in hypersonic vehicle inlets.
文摘Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.
文摘In recent years, hysteretic phenomena in fluid flow systems drew attention for their great variety of industrial and engineering applications. When the high-pressure gas is exhausted to atmosphere from the nozzle exit, the expanded supersonic jet with the Mach disk is formed at a specific condition. In two-dimensional expanded supersonic jet, the hysteresis phenomenon for the reflection type of shock wave is occurred under the quasi-steady flow and the transitional pressure ratio between the regular reflection and Mach reflection is affected by this phe- nomenon. However, so far, there are very few researches for the hysteretic phenomenon of shock wave in a supersonic internal flow and the phenomenon has not been investigated satisfactorily. The present study was concemed with the experimental and numerical investigations of hysteretic phenomena of shock wave in a supersonic nozzle, and discussed the relationship between hysteresis phenomenon and rate of the change of pressure ratio with time.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(2011-0017506)
文摘Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.
基金the UFAST project financed by the European Commission within a cooperation sectorunder number:012226
文摘In usual cases of significant pressure gradients and strong shocks, the front shock takes a fixed location along the wall, at which separation starts. Usually the rear shock is responding to vortex sheding by its deflection angle. In consequence main shock and rear shocks are moving whilst front shock is stable. The goal of the measurements presented here is to find out how the k-foot behaves during shock oscillations in the case when front shock is not fixed by the pressure gradient. Unsteady shock behaviour is also investigated when air jet vortex generators (AJVG) are used. Counteraction of the separation is directly related to the influence on unsteady processes in the shock wave induced separation.
文摘Shock tubes are devices in which the state of a gas is changed suddenly from one uniform state to another by the passage of shock and expansion waves.In the theory of ideal shock tube flow,it is customarily assumed that the unsteady expansion and shock waves generated by diaphragm rupture are a perfectly centered plane wave.However, such waves are generally not centered,or may not even by plane in practice.In the present research,the time-dependent behavior of homogeneous and heterogeneous condensation of moist air in the shock tube is investigated by using a computational fluid dynamics work.Further,the numerical and experimental studies were carried out in order to investigate the effect of the diaphragm rupture process on the flow characteristics of expansion and shock waves generated near the diaphragm.