The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control fi...The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control field, is investigated in this paper. By numerically solving coupled Bloch-Maxwell equations, it is found that, in the absence of the microwave driving field, the atomic medium is transparent to the probe pulse at line center, which propagates over sufficiently long distances. By contrast, when the microwave driving field is applied, the probe pulse at line center can be rapidly absorbed on propagation. This substantial reduction of probe transmittance caused by the microwave driving field may lead to potential applications in designing a new kind of optical switching.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.10575040,10634060, and 10747133
文摘The temporal and spatial dynamics of one weak probe laser pulse, propagating through a A-type atomic medium with two-folded levels under the resonant excitation of one microwave driving field and one strong control field, is investigated in this paper. By numerically solving coupled Bloch-Maxwell equations, it is found that, in the absence of the microwave driving field, the atomic medium is transparent to the probe pulse at line center, which propagates over sufficiently long distances. By contrast, when the microwave driving field is applied, the probe pulse at line center can be rapidly absorbed on propagation. This substantial reduction of probe transmittance caused by the microwave driving field may lead to potential applications in designing a new kind of optical switching.