Characteristics of wheel-rail dynamic interaction due to the rail corrugation in a high-speed railway are analyzed based on the theory of vehicle-track coupled dynamics in this paper.Influences of the corrugation wave...Characteristics of wheel-rail dynamic interaction due to the rail corrugation in a high-speed railway are analyzed based on the theory of vehicle-track coupled dynamics in this paper.Influences of the corrugation wavelength and depth on the wheel-rail dynamic performance are investigated.The results show that,under the excitation of a measured rail corrugation,the wheel-rail dynamic interaction of high-speed railway is enhanced obviously,and the high-frequency dynamic force between wheel and rail is generated,which has an obvious impact on the vibrations of the wheelset and rail,and little effect on the vibration of the frame and carbody.If the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the growth of the corrugation wavelength,otherwise,it will decrease.However,the wheel-rail vertical force keeps increasing with the growth of corrugation depth.Furthermore,if the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the decrease of the running speed,otherwise,it will decrease.It is also found that the critical wavelength of corrugation increases with the growth of the corrugation depth and the running speed,and the critical depth of corrugation is nonlinearly related to the sensitive wavelength.展开更多
Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental metho...Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental method to investigate the effect of the driving speed on the deformation characteristics of the flexspline. First, an experimental apparatus that integrates a special-fabricated micro-displacement platform and a pair of laser displacement sensors is developed, and the radial displacement of the flexspline is measured in vertical and horizontal directions. Next, the deformation analyses of the flexspline at different driving speeds are performed with our method and the conventional method, and the comparison results reveal that the radial displacement of the flexspline is actually composed of both harmonic and random components, and the amplitude decreases and tends to zero with the increase of the driving speed, especially near the closed end of the flexspline. Last, the mechanisms of the inherent multi-frequency and amplitude attenuation characteristics of the radial displacement of the flexspline are discussed. It is indicated that the impact and friction existing in the flexible bearing of the wave generator is likely responsible for the existence of the random component, and the assumption of linear distribution of the ftexspline deformation along the rotating axis is invalid under high speed condition. Our research promotes the further study on the contact-impact problem of the flexible bearing of the wave generator and the transfer characteristic of the elastic deformation of the flexspline.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2013CB036206,2013CB036205)the National Natural Science Foundation of China(Grant No.61134002)
文摘Characteristics of wheel-rail dynamic interaction due to the rail corrugation in a high-speed railway are analyzed based on the theory of vehicle-track coupled dynamics in this paper.Influences of the corrugation wavelength and depth on the wheel-rail dynamic performance are investigated.The results show that,under the excitation of a measured rail corrugation,the wheel-rail dynamic interaction of high-speed railway is enhanced obviously,and the high-frequency dynamic force between wheel and rail is generated,which has an obvious impact on the vibrations of the wheelset and rail,and little effect on the vibration of the frame and carbody.If the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the growth of the corrugation wavelength,otherwise,it will decrease.However,the wheel-rail vertical force keeps increasing with the growth of corrugation depth.Furthermore,if the corrugation wavelength is shorter than the sensitive wavelength,the wheel-rail vertical force will increase with the decrease of the running speed,otherwise,it will decrease.It is also found that the critical wavelength of corrugation increases with the growth of the corrugation depth and the running speed,and the critical depth of corrugation is nonlinearly related to the sensitive wavelength.
基金supported by the Beijing Natural Science Foundation(Grant No.3172017)the National Natural Science Foundation of China(Grant No.11272171)Education Ministry Doctoral Fund of China(Grant No.20120002110070)
文摘Accurate description of the elastic deformation of the flexspline is the foundation for optimization design of the structure and conjugate profiles of the harmonic drive gear. This paper proposed an experimental method to investigate the effect of the driving speed on the deformation characteristics of the flexspline. First, an experimental apparatus that integrates a special-fabricated micro-displacement platform and a pair of laser displacement sensors is developed, and the radial displacement of the flexspline is measured in vertical and horizontal directions. Next, the deformation analyses of the flexspline at different driving speeds are performed with our method and the conventional method, and the comparison results reveal that the radial displacement of the flexspline is actually composed of both harmonic and random components, and the amplitude decreases and tends to zero with the increase of the driving speed, especially near the closed end of the flexspline. Last, the mechanisms of the inherent multi-frequency and amplitude attenuation characteristics of the radial displacement of the flexspline are discussed. It is indicated that the impact and friction existing in the flexible bearing of the wave generator is likely responsible for the existence of the random component, and the assumption of linear distribution of the ftexspline deformation along the rotating axis is invalid under high speed condition. Our research promotes the further study on the contact-impact problem of the flexible bearing of the wave generator and the transfer characteristic of the elastic deformation of the flexspline.