This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. T...This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.展开更多
The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technolog...The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technologies suitable for the wind lidar measurement from an orbital platform become mature. However, there are still some problems to be solved. In order to obtain the optimal performance in wind detection, great importance is being attached to the simulation of a virtual space-borne wind lidar system on computer as developed by NASA and ESA.展开更多
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar ty...On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar type.This system in a quantum dot may be employed as a two-level quantum system-qubit.When the electronis in the superposition state of the ground state and the first-excited state,we obtain the time evolution of the electrondensity.The relations of the probability density of electron on the temperature and the electron-LO-phonon couplingconstant and the relations of the period of oscillation on the temperature,the electron-LO-phonon coupling constant,the Coulomb binding parameter and the confinement length are derived.The results show that the probability densityof electron oscillates with a period when the electron is in the superposition state of the ground and the first-excitedstate,and show that there are different laws that the probability density of electron and the period of oscillation changewith the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher.Andit is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases withincreasing the confinement length not only at lower temperatures but also at higher temperatures.展开更多
文摘This paper centers on the investigation of the subsurface condition of Bayero University Kano Permanent Site with the aim of understanding the lithology and also mapping out the groundwater patterns within the area. To achieve this, time domain IP (induced polarization) and SP (self-potential) methods were adopted using VES (vertical electrical sounding) technique with 49 stations sounded. The result of the interpreted and analyzed measured data shows that the area is underlain by two to five subsurface layers. These layers are top soil, laterite, weathered basement complex rocks, fractured basement complex rocks and fresh basement complex rocks. The aquiferous zone of the study area occurs in the weathered and fractured basements and its thickness ranges from 1.44 m to 70.157 m while the overburden thickness lies between 1.6 m and 72.104 m. SP values were plotted against depths of investigation in order to identify areas with greater depth of flow in the study area. From the analysis of the overburden thickness, aquifer thickness and SP values, the most favorable regions for groundwater exploitation were found around VES 6, 11, 13, 19, 26, 38, 44 and 48. The investigation also provides information about the subsurface condition with regards to engineering construction and safe place for refuse dumping in order to avoid groundwater contamination.
基金supported by National High Tech 863 Project(No.2002AA135280)National Natural Science Foundation of China No.40176011International Bureau of BMBF
文摘The advantage of lidar over other wind sensors is presented in this paper. With more than 20 years research, the development of the space-borne wind lidar is reviewed. Longer-term investigation has made many technologies suitable for the wind lidar measurement from an orbital platform become mature. However, there are still some problems to be solved. In order to obtain the optimal performance in wind detection, great importance is being attached to the simulation of a virtual space-borne wind lidar system on computer as developed by NASA and ESA.
基金Supported by National Natural Science Foundation of China under Grant No.10747002Research Funds from Qufu Normal University under Grant No.XJZ200839
文摘On the condition of electric-LO phonon strong coupling in a parabolic quantum dot,we obtain theeigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method ofPekar type.This system in a quantum dot may be employed as a two-level quantum system-qubit.When the electronis in the superposition state of the ground state and the first-excited state,we obtain the time evolution of the electrondensity.The relations of the probability density of electron on the temperature and the electron-LO-phonon couplingconstant and the relations of the period of oscillation on the temperature,the electron-LO-phonon coupling constant,the Coulomb binding parameter and the confinement length are derived.The results show that the probability densityof electron oscillates with a period when the electron is in the superposition state of the ground and the first-excitedstate,and show that there are different laws that the probability density of electron and the period of oscillation changewith the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher.Andit is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases withincreasing the confinement length not only at lower temperatures but also at higher temperatures.