Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of pers...Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.展开更多
This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model ...This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.展开更多
Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is i...Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.展开更多
Due to the dynamical character of electromagnetic exciter and the coupling between structure and exciter(s),the actual output force acting on the structure is usually not equal to the exact value that is supposed to b...Due to the dynamical character of electromagnetic exciter and the coupling between structure and exciter(s),the actual output force acting on the structure is usually not equal to the exact value that is supposed to be,especially when multi-exciters are used as actuators to precisely actuate large flexible structure.It is necessary to consider these effects to ensure the force generated by each exciter is the same as required.In this paper,a robust control method is proposed for the multi-input and multi-output(MIMO)structural vibration control system to trace the target actuating force of each exciter.A special signal is designed and put into the coupled mul-ti-exciter-structure system,and the input and output signals of the system are used to build a dynamic model involving both the dynamical characters of the exciters and the structure using the subspace identification method.Considering the uncertainty factors of the multi-exciter/structure system,an H-infinity robust controller is designed to decouple the coupling between structure and exciters based on the identified system model.A MIMO vibration control system combined with a flexible plate and three electromagnetic exciters is adopted to demonstrate the proposed method,both numerical simulation and model experiments showing that the output force of each exciter can trace its target force accurately within the requested frequency band.展开更多
文摘Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.
基金Projects(11302252,11202230) supported by the National Natural Science Foundation of China
文摘This work addresses the problem of self-excited vibration,which degrades the stability of the levitation control,decreases the ride comfort,and restricts the construction cost of maglev system.Firstly,a minimum model containing a flexible bridge and a single levitation unit is presented.Based on the simplified model,the principle underlying the self-excited vibration is explored.After investigations about the energy transmission between the levitation system and bridge,it is concluded that the increment of modal damping can dissipate the accumulated energy by the bridge and the self-excited vibration may be avoided.To enlarge the equivalent modal damping of bridge,the sky-hooked damper is adopted.Furthermore,to avoid the hardware addition of real sky-hooked damper,considering the fact that the electromagnet itself is an excellent actuator that is capable of providing sufficiently fast and large force acting on the bridge to emulate the influence of the real sky-hooked damper,the technique of the virtual sky-hooked damper is proposed.The principle underlying the virtual sky-hooked damper by electromagnet is explored and the vertical velocity of bridge is estimated.Finally,numerical and experimental results illustrating the stability improvement of the vehicle-bridge interaction system are provided.
文摘Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.
基金supported by the National Natural Science Foundation of China(Grant Nos.11072198,11102162)111 Project of China(Grant No.B07050)
文摘Due to the dynamical character of electromagnetic exciter and the coupling between structure and exciter(s),the actual output force acting on the structure is usually not equal to the exact value that is supposed to be,especially when multi-exciters are used as actuators to precisely actuate large flexible structure.It is necessary to consider these effects to ensure the force generated by each exciter is the same as required.In this paper,a robust control method is proposed for the multi-input and multi-output(MIMO)structural vibration control system to trace the target actuating force of each exciter.A special signal is designed and put into the coupled mul-ti-exciter-structure system,and the input and output signals of the system are used to build a dynamic model involving both the dynamical characters of the exciters and the structure using the subspace identification method.Considering the uncertainty factors of the multi-exciter/structure system,an H-infinity robust controller is designed to decouple the coupling between structure and exciters based on the identified system model.A MIMO vibration control system combined with a flexible plate and three electromagnetic exciters is adopted to demonstrate the proposed method,both numerical simulation and model experiments showing that the output force of each exciter can trace its target force accurately within the requested frequency band.