In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the...In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the balance between supply and demand. The two surface water resources, Gargar and Merdjet Sidi Abed dams, do not satisfy the requirements of agriculture water. According to the National Office of the Irrigation and Drainage data, the quantity of allocated water is never distributed; the difference between allocated water and drop water can also exceed 20%, and then, another problem of management is that the water losses in the distribution can reach 20% again. The shortage irrigation water resource allocated has constrained the farmers to use groundwater. The chemical analysis of 56 simples to this water showed a significant chemical diversity in the compositions. There is a high salinity risk (C3 class) or very high risk (C4 class) of soil salinisation. A space chart distribution to the EC water probability to exceed 2.25 dS/m interpolated by the indicator kriging method showed that 78% of the groundwater surface presents a significant probability to exceed this limit. The average value of the SAR (sodium adsorption ratio) is lower than 10 that indicates a moderate risk of sodisation. This observation is in contradiction with the high values of the SAR measured in the soil solution. The approach of residual alkalinity (RSC) shows that a good number of drillings analyzed presents a positive sign RSC (RSC 〉 0). This water presents a real danger of sodisation. They have a low salinity, which, for a farmer, does not present any danger.展开更多
文摘In the Lower Cheliff Plain (northwestern of Algeria), the waters resources are limited; the adoption of a rational approach in the management of irrigation water in the irrigated perimeter poses an inequality in the balance between supply and demand. The two surface water resources, Gargar and Merdjet Sidi Abed dams, do not satisfy the requirements of agriculture water. According to the National Office of the Irrigation and Drainage data, the quantity of allocated water is never distributed; the difference between allocated water and drop water can also exceed 20%, and then, another problem of management is that the water losses in the distribution can reach 20% again. The shortage irrigation water resource allocated has constrained the farmers to use groundwater. The chemical analysis of 56 simples to this water showed a significant chemical diversity in the compositions. There is a high salinity risk (C3 class) or very high risk (C4 class) of soil salinisation. A space chart distribution to the EC water probability to exceed 2.25 dS/m interpolated by the indicator kriging method showed that 78% of the groundwater surface presents a significant probability to exceed this limit. The average value of the SAR (sodium adsorption ratio) is lower than 10 that indicates a moderate risk of sodisation. This observation is in contradiction with the high values of the SAR measured in the soil solution. The approach of residual alkalinity (RSC) shows that a good number of drillings analyzed presents a positive sign RSC (RSC 〉 0). This water presents a real danger of sodisation. They have a low salinity, which, for a farmer, does not present any danger.