New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grou...New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.展开更多
We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagati...We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.展开更多
The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the typ...The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.展开更多
A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The ne...A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.展开更多
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for...A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution.展开更多
To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding ...To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding stress development of bars adhered to grout concrete was analyzed. The local bonding stress—slip curve was obtained. Based on the test results,a new bonding stress— slip constitutive model between bars and grout concrete was proposed. The results show that the maximum bonding stress is not influenced by the bar bond length,but it is strengthened when the splitting strength of grout concrete is increased. The model matches the experimental results well,and the regressing coefficient equals 1.7.展开更多
This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear...This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear cohesive zone model (CZM) is used to simulate the inteffacial behavior of rockbolt-grout interface: and a plastic damaged model is adopted for the grout materials. The feasibility of the numerical method is verified by comparing the calculated results with the test observations. The numerical results indicate that two types of cracks of the grout materials can be identified as the inclined crack and the horizontal crack. The inclined crack forms firstly and then the horizontal crack. Both cracks can reduce the interracial shear stress and thus reduce the load transfer efficiency. Further analysis indicates that the crack of the gout material can induce the obvious drops of load capacity, which is not a safe failure mode. This study leads to a better understanding of the mechanism for rockbolt grouted system.展开更多
The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump sys...The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump system, repeated heating-cooling cycles may cause adverse effects on the integrity of cement grout in the ground heat exchanger. To account for the temperature cycling effect, the strength degradation of cement grout due to temperature cycling has been examined by measuring the unconfined compression strength of cured specimens in a humidity-temperature controlling chamber with applying temperature cycles between -5℃ and 50℃. There is a tendency that the unconfined compression strength decreases with an increase in the number of temperature cycles. On the other hand, an equivalent hydraulic conductivity of a pipe-embedded cement grout specimen was evaluated by carrying out a modified flexible wall permeameter test equipped with a water circulating system to control temperature inside the pipe section. The applied operating temperature range was from 5 to 35℃. After three cycles of heating-cooling circulation, the equivalent hydraulic conductivity becomes asymptotic to a constant value, which implies there is no severe detachment of the pipe from the cement grout.展开更多
文摘New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.40772192 and 41072237)the State Key Laboratort of Geomechanics and Deep Underground Engineering(No.SKLGDUEK0903)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100095110015)
文摘We present a series of experimental tests on chemical grouting into a fracture with flowing and static water,using a transparent fracture grouting experimental device.Variations of seepage pressure and grout propagation were compared in our investigation.The results show that flowing water results in drops of seepage pressure,development of penetration radii in the upstream side and drops of propagation area during the same period,compared with grouting in static water.The propagation area in static water is always round before grouts reach the joint boundaries.However,the propagation shape changes from round to an elliptic shape for grouting into a fracture with flowing water.A theoretical model for the grout penetration radius in a fracture considering flowing velocity was developed and validated by our experimental results.These results are helpful in improving understanding of fracture grouting mechanism and in guiding engineering practices.
文摘The pull-out capacities for soil nailing systems comprising of one single 29 mm diameter(type A) and four 16 mm diameter(type B) rebars with grouted cement were examined.A field test and numerical analysis for the type A and type B systems were carried out to investigate the pull-out capacities and the slope stability reinforcement efficiency in soil and rock slopes.The results of the pull-out tests show the mobilized shear force and load transfer characteristics with respect to soil depth.The load-displacement relationship was examined for both type A and type B systems.Slope stability analyses were carried out to study the relationships between soil and nail reinforcement and bending stiffness as well as combined axial tension and shear forces.Factors of safety were calculated in relation to the number of nails and their outside diameters.Both soil and rock slopes were included in this evaluation.
基金the Graduate Developing Innovation Project of Jiangsu Province of China (No. CXZZ11-0306)the Major State Basic Research and Development Program of China (No.2007CB209400)
文摘A new composite two component grout comprised of modified urea-formaldehyde resin and cement was formulated to take account of the advantages and disadvantages of both the cement grout and the chem- ical grout. The new grout is designed for water blocking by reinforcing as well as seepage control by bore grouting. The A component consists of a modified urea-formaldehyde resin A component, some cement, and some water. The B component is an alkaline coagulant. An orthogonal test of four factors at three lev- els showed that gel time increased with increased water content and with urea-formaldehyde resin con- tent. Gel time decreased at increased levels of alkaline coagulant. The A component of this new composite grout is stable over time. A mixed cross-over test showed that as the volume ratio of A to B increases the gel time falls at first but then increases. The solid strength decreases with increasing levels of the B com- ponent. The solid strength increases over time and becomes stable by the 28th day after mixing. The vis- cosity increases with increasing levels of resin A component. The increase is exponential and may be fit to: μ = 8.162e0.0286x.
基金Project(51608539)supported by the National Natural Science Foundation of ChinaProjects(2016M592451,2017T100610)supported by the China Postdoctoral Science Foundation
文摘A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution.
基金Project(2006BAJ03A01-05) supported by National Science and Technology Pillar Program during the 11th Five-Year Plan Period of ChinaProject (JG200705) supported by Key Laboratory of Structural Engineering of Shenyang Jianzhu University, China
文摘To establish bonding stress—slip constitutive model between bars and grout concrete,13 test specimens were employed to study the bonding behavior and the force transfer of bars adhered to grout concrete. The bonding stress development of bars adhered to grout concrete was analyzed. The local bonding stress—slip curve was obtained. Based on the test results,a new bonding stress— slip constitutive model between bars and grout concrete was proposed. The results show that the maximum bonding stress is not influenced by the bar bond length,but it is strengthened when the splitting strength of grout concrete is increased. The model matches the experimental results well,and the regressing coefficient equals 1.7.
基金financially supported by the National Natural Science Fund of China (Nos. 51304067 and 51104057)the Fund of Opening Laboratory for Deep Mine Construction, Henan Polytechnic University (No. 2012KF-01)the Education Department of Henan Province (No. 13A440311)
文摘This paper presents a numerical study on the pullout behavior of the rockholt grouted system. Among the complicated failure modes of the rockbolt grouted system, the crack of the grout is concerned here. A tri- linear cohesive zone model (CZM) is used to simulate the inteffacial behavior of rockbolt-grout interface: and a plastic damaged model is adopted for the grout materials. The feasibility of the numerical method is verified by comparing the calculated results with the test observations. The numerical results indicate that two types of cracks of the grout materials can be identified as the inclined crack and the horizontal crack. The inclined crack forms firstly and then the horizontal crack. Both cracks can reduce the interracial shear stress and thus reduce the load transfer efficiency. Further analysis indicates that the crack of the gout material can induce the obvious drops of load capacity, which is not a safe failure mode. This study leads to a better understanding of the mechanism for rockbolt grouted system.
基金supported by the Fundamental Research and Development Program of the Center of New and Renewable Energy of the Ministry of Knowledge and Economy (Grant No. 2008-N-GE08-R-01)the National Research Foundation of Korea Grant funded by the Korean Government (Grant No. 2010-0011159)
文摘The applicability of cement grout (or cement-based grout) has been considered as an alternative to bentonite grout commonly used to backfill closed-loop vertical ground heat exchangers. In a geothermal heat pump system, repeated heating-cooling cycles may cause adverse effects on the integrity of cement grout in the ground heat exchanger. To account for the temperature cycling effect, the strength degradation of cement grout due to temperature cycling has been examined by measuring the unconfined compression strength of cured specimens in a humidity-temperature controlling chamber with applying temperature cycles between -5℃ and 50℃. There is a tendency that the unconfined compression strength decreases with an increase in the number of temperature cycles. On the other hand, an equivalent hydraulic conductivity of a pipe-embedded cement grout specimen was evaluated by carrying out a modified flexible wall permeameter test equipped with a water circulating system to control temperature inside the pipe section. The applied operating temperature range was from 5 to 35℃. After three cycles of heating-cooling circulation, the equivalent hydraulic conductivity becomes asymptotic to a constant value, which implies there is no severe detachment of the pipe from the cement grout.