[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by co...[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.展开更多
To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ra...To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.展开更多
Fire is quite a common natural phenomenon closely related to forest hydrology in forest ecosystem. The influence of fire on water is indirectly manifested in that the post fire changes of vegetation, ground cover, soi...Fire is quite a common natural phenomenon closely related to forest hydrology in forest ecosystem. The influence of fire on water is indirectly manifested in that the post fire changes of vegetation, ground cover, soil and environment affect water cycle, water quality and aquatic lives. The effect varies depending upon fire severity and frequency. Light wildland fires or prescribed burnings do not affect hydrology regime significantly but frequent burnings or intense fires can cause changes in hydrology regime similar to that caused clear cutting.展开更多
This research examined nitrogen mineralization in the top 10 cm of soils along a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the rel...This research examined nitrogen mineralization in the top 10 cm of soils along a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected,and the in situ core incubation method was used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground.In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.展开更多
Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction ...Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction during long-time. Hydration effort develop macro-micro void structure in bentonite under deeply geological environment. The bentonite occurred uncertainly problems or translation in various experimental interaction boundary conditions such as thermal-hydration-chemical condition. To detect accumulation of deformation or changing of bentonite behaviour due to these processes is important that the modified experimental methods are required. In addition, to interpret laboratory experimental results combine to establish mathematical modelling in possible. The overall investigation or performance of the bentonite have contributed to represent the intrinsic properties of engineer barrier systems. This study focused on changing of properties of unsaturated compacted bentonite related to hydration effort due to increasing of relative humidity. Changing of some properties revealed to become instability or uncertainly problems in practice. Soil-water characteristic curve was measured with considering of various temperatures using vapor pressure technique. Swelling pressure and creep behaviour such as mechanical components were described with hydration effort.展开更多
This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the case...This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.展开更多
Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The trig...Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.展开更多
In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedoge...In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.展开更多
Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the orig...Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in^(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ^(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks.展开更多
We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were form...We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.展开更多
Wet oxidation procedure,i.e.,Walkley-Black (WB) method,is a routine,relatively accurate,and popular method for the determination of soil organic matter (SOM) but it is time-consuming,costly and also has a high potenti...Wet oxidation procedure,i.e.,Walkley-Black (WB) method,is a routine,relatively accurate,and popular method for the determination of soil organic matter (SOM) but it is time-consuming,costly and also has a high potential to cause environmental pollution because of disposal of chromium and strong acids used in this analysis.Therefore,loss-on-ignition (LOI) procedure,a simple and cheap method for SOM estimation,which also avoids chromic acid wastes,deserves more attention.The aims of this research were to study the statistical relationships between SOM determined with the LOI (SOMLOI) and WB (SOMWB) methods to compare the spatial variability of SOM in two major plains,Shahrekord and Koohrang plains,of Chaharmahal-va-Bakhtiari Province,Iran.Fifty surface soil samples (0-25 cm) were randomly collected in each plain to determine SOM using the WB method and the LOI procedure at 300,360,400,500 and 550 ℃ for 2 h.The samples covered wide ranges of soil texture and calcium carbonate equivalent (CCE).The general linear form of the regression equation was calculated to estimate SOM LOI from SOM obtained by the WB method for both overall samples and individual plains.Forty soil samples were also randomly selected to compare the SOM and CCE before and after ignition at each temperature.Overall accuracy of the continuous maps generated for the LOI and WB methods was considered to determine the accordance of two procedures.Results showed a significant positive linear relationship between SOM LOI and SOM WB.Coefficients of determination (R2) of the equations for individual plains were higher than that of the overall equation.Coefficients of determination and line slopes decreased and root mean square error (RMSE) increased with increasing ignition temperature,which may be due to the mineral structural water loss and destruction of carbonates at higher temperatures.A temperature around 360 ℃ was identified as optimum as it burnt most organic carbon,destroyed less inorganic carbon,caused less clay structural water loss,and used less electrical energy.Although the trends of SOM in the kriged maps by the two procedures accorded well,low overall accuracy was observed for the maps obtained by the two methods.While not suitable for determination where high accuracy is required,determination of organic carbon through LOI is likely suitable for exploratory soil surveys where rough estimation of organic matter is required.展开更多
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire h...An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited. The purpose of this study was to evaluate the long-term impact of fire on the effective thermal conductivity of soils by directly comparing fire-heated and no-fire control soils through a series of laboratory studies. The thermal conductivity was measured for ten soil samples from two sites within the Manitou Experimental Forest, Colorado, USA, for a range of water contents from saturation to the residual degree of saturation. The thermal conductivity measured was compared with independent estimates made using three empirical models from literature, including the Campbell et al. (1994), CSt~ and Konrad (2005), and Massman et al. (2008) models. Results demonstrate that for the test soils studied, the thermal conductivity of the fire-heated soils was slightly lower than that of the control soils for all observed water contents. Modeling results show that the Campbell et al. (1994) model gave the best agreement over the full range of water contents when proper fitting parameters were employed. Further studies are needed to evaluate the significance of including the influence of fire burn on the thermal properties of soils in modeling studies.展开更多
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic ma...Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.展开更多
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2014JZ01 and2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determination of chromium and zinc in soil samples by flame atomic absorption spectrometry.[Method] The method for determination of Cr and Zn in soil by combined flame atomic absorption spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-0.8 mg/L for Cr and 0-0.8 mg/L for Zn, the detection limits of Cr and Zn was 0.0025 mg/L and 0.002 3 mg/L, respectively. Recoveries of 102.4%-103.2% for Cr and 97.7%-98.3% for Zn were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of Cr and Zn in soil samples.
基金Project(2017YFC0805100)supported by the National Key R&D Program of ChinaProject(GUIKE AA18118030)supported by Guangxi Innovation-driven Development Program,ChinaProject(N172502003)supported by the Fundamental Research Funds for the Central Universities,China.
文摘To develop Martian soil simulant,basalts of the Chahar volcanic group in Wulanchabu,Inner Mongolia,China were selected as the simulant initial materials,which were ground and sorted to a predetermined particle size ratio,and small amounts of magnetite and hematite were added.The main phases of NEU Mars-1 simulant were plagioclase,augite and olivine.The glass transition and crystallization temperatures of NEU Mars-1 were 547.8 and 795.7°C,respectively.The complex dielectric constant,magnetic conductivity(0.99-1.045),and dielectric loss tangent angles(0.0025-0.030)of NEU Mars-1 were all stable in the frequency range of 2-18 GHz.Mossbauer spectroscopy results showed that the mass ratio of Fe2+to Fe3+in the simulant was 77.6:22.4.The NEU Mars-1 Martian soil simulant demonstrated particle size ratio,chemical composition,phase composition,thermal stability,and dielectric property similar to Martian soil,and can be used as the substitute material to extract oxygen and metals with in-situ resource utilization technologies.
文摘Fire is quite a common natural phenomenon closely related to forest hydrology in forest ecosystem. The influence of fire on water is indirectly manifested in that the post fire changes of vegetation, ground cover, soil and environment affect water cycle, water quality and aquatic lives. The effect varies depending upon fire severity and frequency. Light wildland fires or prescribed burnings do not affect hydrology regime significantly but frequent burnings or intense fires can cause changes in hydrology regime similar to that caused clear cutting.
基金Project supported by the Commonwealth Fellowship Scheme and the United College Endowment Fund of the Chinese University of Hong Kong
文摘This research examined nitrogen mineralization in the top 10 cm of soils along a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected,and the in situ core incubation method was used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground.In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.
文摘Radioactive waste disposal is important facility for human and environment in the world. Compacted bentonite in radioactive disposal engineer barrier design really experience hydration effort as decreasing of suction during long-time. Hydration effort develop macro-micro void structure in bentonite under deeply geological environment. The bentonite occurred uncertainly problems or translation in various experimental interaction boundary conditions such as thermal-hydration-chemical condition. To detect accumulation of deformation or changing of bentonite behaviour due to these processes is important that the modified experimental methods are required. In addition, to interpret laboratory experimental results combine to establish mathematical modelling in possible. The overall investigation or performance of the bentonite have contributed to represent the intrinsic properties of engineer barrier systems. This study focused on changing of properties of unsaturated compacted bentonite related to hydration effort due to increasing of relative humidity. Changing of some properties revealed to become instability or uncertainly problems in practice. Soil-water characteristic curve was measured with considering of various temperatures using vapor pressure technique. Swelling pressure and creep behaviour such as mechanical components were described with hydration effort.
文摘This paper deals with a study on the effects of Chinese fir, loblolly pine and deciduous oak forests on thenutrient status of soils in northern subtropics of China, adopting the principle of forest ecology in the caseof similar climate and soil type. The experimental area was situated in the Xiashu Experimental Centre ofForest, where the soil is yellow-brown soil derived from siliceous slope wash. Sample plots of these 3 standswere established to study the nutrient status in litter, the amount of nutrient uptake by roots, the quantityof nutrient output by percolating water outside the deep layer of soil, and the seasonal dynamics of availablenutrient in surface soil. It was shown that the intensity of nutrient cycling in soil under deciduous oak wasthe highest, and the effect of oak in improving soil fertility was the best. The result of improving soil fertilityby Chinese fir was the most inferior, though the intensity of nutrient cycling under that stand was higherthan that under loblolly pine stand. The influence of loblolly pine on the improvement of soil fertility wasbetter than that of Chinese fir, in spite of its lowest intensity of nutrient cycling.
文摘Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.
基金supported by the Soil Science department, faculty of Agriculture,University of Guilan
文摘In order to characterize various micromorphologic properties of two forest soils derived from different parent rocks in Lahijan, and use the data collected from micromorphological analysis to interpret dominant pedogenic processes. Two representative soil pedons, granite (P1) and andesitic basalt (P2) were selected in a mountain landform with northwest aspect. Samples for thin section preparation were taken from each horizon by Kubiena boxes or clods. Micromorphological analysis of soils derived from these two soil pedons in eastern part of Lahijan (northern Iran) were conducted based on the physicochemical and mineralogical data. Micromorphological properties were characterized using a polarized light microscope under plain and cross light. Thin section study indicated that the nature of the parent material clearly affected the content of clay formation. It also showed that clay accumulation in the Bt horizons was not only due to clay illuviation (argillan), but that strong in situ weathering of primary minerals also contributed to the enrichment of clay in soils derived from andesitic basalt. Comparing the results of clay mineralogy obtained from X-ray diffraction (XRD) with microscopic studies revealed that birefringence fabric (b-fabric) of the groundmass was partly striated due to smectitic minerals in soil of andesitic basalt (Hapludalf), whereas speckled birefringence fabric was dominant in soil of granite (Udorthent) because of the absence of these minerals. We speculate that pores of skeletal fragments or microcracks in P1 were a place for illuvial clay protection. However, the main factor for flluvial clay film disruption (striation anddeformation) was biological activity (faunal turbation and root pressure) in P1 and expandable minerals and faunal turbation in P2.
基金supported by the National Natural Science Foundation of China through Grant No.41473023
文摘Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in^(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ^(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks.
基金Project supported by the Research Foundation of University of Catania, Italy (No. ORCT067410/2006)
文摘We characterized humic acids (HAs) and glycerol-extractable organic fractions (GEOFs) extracted from four Andisols, taken from comparable soil-climate conditions on the east side of Mount Etna. The soils were formed on old lava (about 9000 years ago), old tephra (about 8 700 years ago), recent lava (about 2 600 years ago) and recent tephra (about 3600 years ago). A part of the organic matter of the soils, deprived of HAs and fulvic acids (FAs), was isolated by glycerol extraction. The GEOF can not be extracted with alkaline solutions, probably because it is closely bound to the mineral component of the soil. The characterization of the extracted organic fraction was carried out using elementary and functional group analysis and Fourier transform infrared (FT-IR) spectroscopy. About 20 extractions were necessary to extract the HA and FA from the older soils and about 10 extractions to extract them from the younger soils. Data showed that the CEOFs had a greater ash content and a smaller N content, as well as a greater presence of aliphatic compounds and carboxylic groups as compared to the HA extracted from the same soil. The GEOFs extracted from younger soils also had a lower yield, ash and COOH-group content, and were more aliphatic than the GEOF extracted from older soils. Finally, the GEOFs were more closely bound to the amorphous component of the soil ('short-range' minerals) and consequently less subject to biodegradation.
文摘Wet oxidation procedure,i.e.,Walkley-Black (WB) method,is a routine,relatively accurate,and popular method for the determination of soil organic matter (SOM) but it is time-consuming,costly and also has a high potential to cause environmental pollution because of disposal of chromium and strong acids used in this analysis.Therefore,loss-on-ignition (LOI) procedure,a simple and cheap method for SOM estimation,which also avoids chromic acid wastes,deserves more attention.The aims of this research were to study the statistical relationships between SOM determined with the LOI (SOMLOI) and WB (SOMWB) methods to compare the spatial variability of SOM in two major plains,Shahrekord and Koohrang plains,of Chaharmahal-va-Bakhtiari Province,Iran.Fifty surface soil samples (0-25 cm) were randomly collected in each plain to determine SOM using the WB method and the LOI procedure at 300,360,400,500 and 550 ℃ for 2 h.The samples covered wide ranges of soil texture and calcium carbonate equivalent (CCE).The general linear form of the regression equation was calculated to estimate SOM LOI from SOM obtained by the WB method for both overall samples and individual plains.Forty soil samples were also randomly selected to compare the SOM and CCE before and after ignition at each temperature.Overall accuracy of the continuous maps generated for the LOI and WB methods was considered to determine the accordance of two procedures.Results showed a significant positive linear relationship between SOM LOI and SOM WB.Coefficients of determination (R2) of the equations for individual plains were higher than that of the overall equation.Coefficients of determination and line slopes decreased and root mean square error (RMSE) increased with increasing ignition temperature,which may be due to the mineral structural water loss and destruction of carbonates at higher temperatures.A temperature around 360 ℃ was identified as optimum as it burnt most organic carbon,destroyed less inorganic carbon,caused less clay structural water loss,and used less electrical energy.Although the trends of SOM in the kriged maps by the two procedures accorded well,low overall accuracy was observed for the maps obtained by the two methods.While not suitable for determination where high accuracy is required,determination of organic carbon through LOI is likely suitable for exploratory soil surveys where rough estimation of organic matter is required.
基金supported by the National Science Foundation (NSF), USA (division of graduate education, No.DGE-0638719)
文摘An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited. The purpose of this study was to evaluate the long-term impact of fire on the effective thermal conductivity of soils by directly comparing fire-heated and no-fire control soils through a series of laboratory studies. The thermal conductivity was measured for ten soil samples from two sites within the Manitou Experimental Forest, Colorado, USA, for a range of water contents from saturation to the residual degree of saturation. The thermal conductivity measured was compared with independent estimates made using three empirical models from literature, including the Campbell et al. (1994), CSt~ and Konrad (2005), and Massman et al. (2008) models. Results demonstrate that for the test soils studied, the thermal conductivity of the fire-heated soils was slightly lower than that of the control soils for all observed water contents. Modeling results show that the Campbell et al. (1994) model gave the best agreement over the full range of water contents when proper fitting parameters were employed. Further studies are needed to evaluate the significance of including the influence of fire burn on the thermal properties of soils in modeling studies.
基金Supported by the Netherlands Foundation for the Advancement of Tropical Research (NWO-WOTRO) (Nos.WAN 75-405and WAN 75-406)
文摘Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.