期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
腾冲火山区剧烈地热活动与地震流体变化分析 被引量:1
1
作者 张立 高文斐 +3 位作者 苏有锦 孙自刚 段胜朝 曾庆堂 《高原地震》 2019年第A01期5-11,共7页
对云南腾冲火山区剧烈地热活动及伴随的泉水发浑变色等宏观现象进行了现场调查及分析。通过对水样、气样化学组分、水温变化、降雨、该地区水热爆炸记录及当地震例等资料进行对比分析,结果表明腾冲剧烈地热活动,以及伴随的水发浑变色、... 对云南腾冲火山区剧烈地热活动及伴随的泉水发浑变色等宏观现象进行了现场调查及分析。通过对水样、气样化学组分、水温变化、降雨、该地区水热爆炸记录及当地震例等资料进行对比分析,结果表明腾冲剧烈地热活动,以及伴随的水发浑变色、流量增大、水温升高和喷水等宏观现象是该区域断裂活动增强和地下幔源物质活动加剧,分析认为是地震活动性的宏观现象。 展开更多
关键词 地震流体宏观异常 腾冲 温泉 火山地热活动 地震相关性
下载PDF
FRAME DESIGN OF REMOTE SENSING MONITORINGFOR VOLCANIC ACTIVITIES IN CHANGBAI MOUNTAINS
2
作者 BOLi-qun ZHAOYun-ping HUARen-kui 《Chinese Geographical Science》 SCIE CSCD 2003年第4期347-351,共5页
Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid devel... Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology,space monitoring of volcanic activities has already become possible,particularly in the application of thermal infrared remote sensing. The paper,through the detailed analysis of geothermal anomaly factors such as heat radiation,heat conduction and convection,depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed,and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also,a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally,some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas. 展开更多
关键词 thermal infrared remote sensing volcanic activity geothermal anomaly changbai mountains
下载PDF
The transport of water in subduction zones 被引量:64
3
作者 ZHENG YongFei CHEN RenXu +1 位作者 XU Zheng ZHANG ShaoBing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期651-682,共32页
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subduc... The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately. 展开更多
关键词 Subduction zones Oceanic crust Mantle wedge Thermal structure Hydrous minerals Water transport Arc magmatism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部