In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m se...In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.展开更多
Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Forma...Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.展开更多
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaw...Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.展开更多
基金National Planed Major S&T Projects(No.2011ZX05002-002)Scientific Research Project of Sinopec(No.P03011)Key Technology Tacking Project,Shengli Oilfield Company,Sinopec(No.YKK0808)
文摘In 2011, petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re- alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pal 61 well, with 855.7 949.6 m section, in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa. s (50 ℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.
基金Supported by Projects of the National Natural Science Foundation of China(41002038)the National Major Fundamental Research and Development Projects(Nos.2012CB822002,2009CB219304)
文摘Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.
基金Supported by NSFC project No. 40372066 and SRFDP No. 20030183042
文摘Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions. Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ13C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb, suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.