Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an...Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.展开更多
The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in...The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in the northern Songliao Basin with good results.This study provides technical clues in deep formations and offers references for other areas to identify oil and gas layers.展开更多
Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Forma...Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.展开更多
基金sponsored by the Science Research and Technology Development Project of Petrochina Company Limited "Well Logging Interpretation and Integrative Evaluation of the Complex Lithology"(Grant No.2008A-2705)
文摘Matrix porosity calculations of fractured and vuggy reservoirs, such as volcanics and weathered dolomite, are one of the problems urgently needed to solve in well-log evaluation. In this paper, we first compare the an empirical formula for porosity calculation from full diameter rhyolite core experiments with the matrix porosity formulas commonly used. We discuss the applicability of the empirical formula in fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Based on core analysis data, the error distribution of the calculated porosity of our empirical formula and the other porosity formulas in these reservoirs are given. The statistical error analysis indicates that the our empirical formula provides a higher precision than the other porosity formulas. When the porosity is between 1.5% and 15%, the acoustic experiment formula can be used not only for acidic volcanics but also in other fractured and vuggy reservoirs, such as intermediate-basic volcanics and weathered dolomite. Moreover, the formula can reduce the effects of borehole enlargement and rock alteration on porosity computation.
基金Supported by National Oil-gas project : No XQ-2004-07
文摘The authors generalized the methods how to identify and evaluate gas zones using logs,and put forward the methods of crossplots and overlays of porosity logs on the identification of volcanic gas-bearing reservoirs in the northern Songliao Basin with good results.This study provides technical clues in deep formations and offers references for other areas to identify oil and gas layers.
基金Supported by Projects of the National Natural Science Foundation of China(41002038)the National Major Fundamental Research and Development Projects(Nos.2012CB822002,2009CB219304)
文摘Petroleum geologists have paid great attentions to the volcanic reservoirs of Songliao Basin in NE Chi- na. There are plenty of subvolcanic rocks in the Songliao Basin accompanying the Early Cretaceous Yingeheng Formation. The logging data show the good reservoir potential of these intrusive rocks but the distribution char- acteristics and formation mechanisms of these reservoirs are not clearly understood. Based on the previous stud- ies by using coring, cuts and logging data of Yingtai rift depression, the reservoirs' characteristics of intrusive rocks are presented. There are two types of intrusive rocks namely the syenodiorite-porphyrite and diabase which occur as laccolith and/or sill, both having the characteristics of low gamma and high density with little primary porosity and permeability. The prevalent reservoir porosity is the secondary porosity, such as spongy/cavernous pore, tectonic fracture. The laboratory data of porosity of diabase can reach 6.7%, but the permeability is less than 0.6 x 10-3μm2, median pressure is high, indicating that the pore throat of this kind reservoir is small. The maximum logging porosity is about 12%. The change of porosity does not correlate to the buried depth. It is the major significant differences in the distributive characteristics compared to the normal sedimentary rock reservoirs. Most of intrusive rocks underwent alteration diagenesis whilst some were subjected to precipitation diagenesis. The spongy and cavernous pore can be formed during the alteration processes of plagioclase to illite and pyroxene to chlorite. The secondary porosity is greatly correlated with the alteration intensity of matrix, pla- gioclase and pyroxene. There are pyroxenes and more plagioclases in diabase, which cause the higher alteration intensity than the syenodiorite-porphyrites in the same acid fluid. So the porosity of diabase is higher than that of syenodiorite-porphyrites. The top or/and bottom part of intrusive rocks develop the higher porosity. Because those parts are easy to contact formation fluid, and the shrink fractures give the more surface for reaction be- tween fluid and rock. The porosity of intrusive rocks is same to the volcanic rocks in Yingtai rift depression and Xujiaweizi rift depression which bear the prolific gas. It suggests good reservoir potential. Intrusive rocks are hosted by the dark mudstone which indicates semi-deep and deep lake facies belt.