期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
中国东北东部中生代火山活动与泛太平洋板块 被引量:31
1
作者 殷长建 彭玉鲸 靳克 《中国区域地质》 CSCD 2000年第3期303-311,共9页
长白山脉中生代火山岩带与东侧之洋陆边界平行展布。火山岩浆作用可划分为三大构造阶段(2 30~ 190Ma ,178~ 12 5Ma ,118~ 6 5Ma) ,四大旋回 ,11个旋回和 2 4个火山事件。由安粗岩系和钙碱性岩系组成的一个新的火山岩浆作用构造类型 ... 长白山脉中生代火山岩带与东侧之洋陆边界平行展布。火山岩浆作用可划分为三大构造阶段(2 30~ 190Ma ,178~ 12 5Ma ,118~ 6 5Ma) ,四大旋回 ,11个旋回和 2 4个火山事件。由安粗岩系和钙碱性岩系组成的一个新的火山岩浆作用构造类型 ,称之为走滑大陆边缘—拉分张裂性火山岩系。洋陆板块互动方式的更迭及速率的变化是火山岩浆作用地球动力学深部发展过程的主控因素。 展开更多
关键词 中国东北东部 火山岩浆作用 泛太平洋板块
下载PDF
内蒙古李清地银铅锌矿区成矿地质及地球化学特征 被引量:7
2
作者 吴家富 《物探与化探》 CAS CSCD 北大核心 2010年第2期154-157,共4页
内蒙古李清地银铅锌矿区位于华北地台北缘大青山金银多金属成矿带东段,基底主要出露太古宇集宁岩群中深变质岩系,中生代叠加强烈的火山—岩浆作用,为多期叠加复合成矿作用地区。矿体主要分布在燕山期花岗岩与集宁岩群大理岩的外接触带上... 内蒙古李清地银铅锌矿区位于华北地台北缘大青山金银多金属成矿带东段,基底主要出露太古宇集宁岩群中深变质岩系,中生代叠加强烈的火山—岩浆作用,为多期叠加复合成矿作用地区。矿体主要分布在燕山期花岗岩与集宁岩群大理岩的外接触带上,岩浆沿断裂侵位,热液沿裂隙向围岩扩散并与围岩发生交代作用,导致铅锌银等沿断裂破碎带富集成有工业意义的矿体。在李清地一带圈出的甲类化探异常是以银为主的多金属矿致异常,异常元素有Ag、Pb、W、As、Au、Bi、Hg、Sb、Zn等,元素组合复杂,具明显的浓度分带和浓集中心。这种多元素异常显示出在该区寻找金银多金属矿产资源的潜力和充分的地球化学依据。 展开更多
关键词 银铅锌矿区 火山-岩浆作用 地球化学特征 内蒙古
下载PDF
云南景谷岔河铜矿控矿因素
3
作者 孙福伟 付义琴 《云南地质》 2011年第3期312-315,共4页
芒亨河断裂的次级断裂是主要控矿构造,含矿围岩为上三叠统小定西组(T3xd)富钠质安山岩、玄武岩。受构造、层位、碎屑粒度的制约。
关键词 细粒块状铜矿 中低温热液型 火山岩浆作用 云南景谷岔河
下载PDF
大兴安岭东南段哈拉苏西铅锌多金属矿床地质特征及成因探讨 被引量:1
4
作者 杨斐 王志浩 +2 位作者 岳雷 朱随洲 陈汝建 《能源与环保》 2022年第5期82-89,共8页
大兴安岭东南段晚侏罗世—早白垩世火山—岩浆活动强烈,形成了以北北东向构造控制的构造岩浆岩带,发现多处与其相关的铅锌银矿床。在充分收集已有地质、物探和化探资料的基础上,分析了哈拉苏西铅锌多金属矿矿区和矿体地质特征,提出了矿... 大兴安岭东南段晚侏罗世—早白垩世火山—岩浆活动强烈,形成了以北北东向构造控制的构造岩浆岩带,发现多处与其相关的铅锌银矿床。在充分收集已有地质、物探和化探资料的基础上,分析了哈拉苏西铅锌多金属矿矿区和矿体地质特征,提出了矿床成因机制和找矿方向。研究为大兴安岭东南段与火山—岩浆作用相关中低温热液型金属矿的发现提供了基础地质资料和勘查找矿思路。 展开更多
关键词 地质特征 中低温热液型铅锌多金属矿床 火山岩浆作用 大兴安岭东南段
下载PDF
Carboniferous slab-retreating subduction of backarc oceans:the final large-scale lateral accretion of the southern Central Asian Orogenic Belt 被引量:2
5
作者 Hai Zhou Guochun Zhao +6 位作者 Yigui Han Donghai Zhang Meng Wang Xianzhi Pei Narantsetseg Tserendash Qian Zhao Enkh-Orshikh Orsoo 《Science Bulletin》 SCIE EI CSCD 2022年第13期1388-1398,M0004,共12页
During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical an... During Carboniferous time,tremendous juvenile arc crust was formed in the southern Central Asian Orogenic Belt(CAOB),although its origin remains unclear.Herein,we presented zircon U-Pb-Hf and whole-rock geochemical and Sr-Nd isotopic data for a suite of volcanic and pyroclastic rocks from the Khan-Bogd area in southern Mongolia.These Carboniferous pyroclastic rocks generally have some early Paleozoic zircons,probably derived from the granitic and sedimentary rocks of the Lake Zone and the Gobi-Altai Zone to the north,indicative of a continental arc nature.In addition,they have a main zircon U-Pb age of ca.370–330 Ma,positive Hf and Nd isotopes,and mafic-intermediate arc affinity,similar to the coeval arc magmatism.Moreover,the pyroclastic rocks of the northern area have more mafic and older volcanic components with depositional time(ca.350–370 Ma;Visean and Bashkirian stages)earlier than that in the southern area(mainly ca.350–315 Ma;Serpukhovian and Bashkirian stages).Combining a preexisting northward subduction supported by the available magnetotelluric data with a slab rollback model of the main oceanic basin of the Paleo-Asian Ocean(PAO)during Carboniferous and Triassic times,we infer that the Carboniferous arc magmatism was probably derived from a backarc ocean triggered by slab rollback.Thus,the juvenile arc volcanism of Mongolia,together with other areas(e.g.,Junggar)in the southern CAOB,represented a significant lateral accretion that terminated after the Carboniferous due to a significant contraction of the PAO. 展开更多
关键词 CARBONIFEROUS Central Asian Orogenic Belt Paleo-Asian Ocean Southern Mongolia Slab retreating
原文传递
The transport of water in subduction zones 被引量:64
6
作者 ZHENG YongFei CHEN RenXu +1 位作者 XU Zheng ZHANG ShaoBing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第4期651-682,共32页
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subduc... The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(>25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of <80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately. 展开更多
关键词 Subduction zones Oceanic crust Mantle wedge Thermal structure Hydrous minerals Water transport Arc magmatism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部