The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal st...The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.展开更多
ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient.The luminescence properties of the samples are investigated.In the same excitation condition,the photoluminesce...ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient.The luminescence properties of the samples are investigated.In the same excitation condition,the photoluminescence(PL) spectra of all samples show an ultraviolet(UV) emission and a broad strong visible emission band.The asymmetric visible emis-sion band of annealed samples has a red-shift as the annealing temperature increasing from 200 ℃ to 600 ℃ and it can be deconvoluted into two subband emissions centered at 535 nm(green emission) and 611 nm(orange-red emission) by Gaussian-fitting analysis.Analyses of PL excitation(PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state,which can be attributed to the electron transition from Zn interstitial(Zni) to oxygen vacancy(Vo) and oxygen interstitial(Oi),respectively.展开更多
基金Project(51201052)supported by the National Natural Science Foundation of ChinaProject(2012RFQXG107)supported by the Innovative Talent Fund of Harbin City+1 种基金Project(E201056)supported by Natural Science Foundation of Heilongjiang Province of ChinaProject(1252G022)supported by the Program for Youth Academic Backbone in Heilongjiang Provincial University,China
文摘The high-temperature stabilization of ZnO nanorods synthesized by hydrothermal treatment was investigated. The structure and morphologies of ZnO nanorods were characterized by XRD and SEM, respectively. The thermal stability of ZnO nanorods was also detected by thermal gravity analyzing. Thermal annealing treatment results indicate that ZnO nanorods are fundamentally stable when annealing temperature is lower than 600 ℃. When annealing temperature is beyond 600℃, the diameters of ZnO nanorods obviously decrease and the aggravating tendency of nanorods between each other also increase. Annealing treatment can greatly influence the gas sensing properties of ZnO nanorods. Comparing with ZnO nanorods without annealing treatment, the gas sensing property of ZnO nanorods to H2 with concentration of 2.5×10-6 can increase from 2.22 to 3.56. ZnO nanorods annealed at 400 ℃ exhibit optimum gas sesing property to H2 gas.
基金supported by the National Natural Science Foundation of China(Nos.60877029,10904109,60977035 and 60907021)the Natural Science Foundation of Tianjin(Nos.09JCYBJC01400 and 10SYSYJC28100)+1 种基金the Key Subject for Materials Physics and Chemistry of Tianjinthe Open Foundation of Key Laboratory of Luminescence and Optical Information of Ministry of Education(Nos.2010LOI02 and 2010LOI11)
文摘ZnO nanorods prepared by a solution-phase method are annealed at different temperatures in oxygen ambient.The luminescence properties of the samples are investigated.In the same excitation condition,the photoluminescence(PL) spectra of all samples show an ultraviolet(UV) emission and a broad strong visible emission band.The asymmetric visible emis-sion band of annealed samples has a red-shift as the annealing temperature increasing from 200 ℃ to 600 ℃ and it can be deconvoluted into two subband emissions centered at 535 nm(green emission) and 611 nm(orange-red emission) by Gaussian-fitting analysis.Analyses of PL excitation(PLE) spectra and PL spectra at different excitation wavelengths reveal that the green emission and the orange-red emission have a uniform initial state,which can be attributed to the electron transition from Zn interstitial(Zni) to oxygen vacancy(Vo) and oxygen interstitial(Oi),respectively.