期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
高炉余能余热驱动的不可逆闭式布雷顿热电冷联产装置火用性能分析 被引量:5
1
作者 冯辉君 陈林根 孙丰瑞 《热科学与技术》 CAS CSCD 北大核心 2013年第2期180-188,共9页
用有限时间热力学理论建立了由一个高炉余能余热驱动的不可逆闭式布雷顿循环和一个内可逆四热源吸收式制冷循环组成的热电冷联产循环模型,导出了其火用输出率和火用效率的表达式。利用数值计算方法,分析了循环各参数对火用输出率和火用... 用有限时间热力学理论建立了由一个高炉余能余热驱动的不可逆闭式布雷顿循环和一个内可逆四热源吸收式制冷循环组成的热电冷联产循环模型,导出了其火用输出率和火用效率的表达式。利用数值计算方法,分析了循环各参数对火用输出率和火用效率与压比关系的影响,比较了最大火用输出率和最大火用效率性能,给出了实际热电冷联产装置设计和运行的建议。 展开更多
关键词 有限时间热力学 不可逆闭式布雷顿循环 热电冷联产装置 火用性能
下载PDF
变工况条件下的纯电动车热泵系统火用性能分析
2
作者 孙旭东 谷波 田镇 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第5期608-613,共6页
基于台架试验数据和热力学第1、2定律,通过改变制冷剂R134a的充注量、室外环境温度和压缩机转速等工况条件,推导出纯电动车热泵系统的性能系数(COP)及其火用损失和火用效率的计算公式,并分析了系统的性能.结果表明:制冷剂R134a的最... 基于台架试验数据和热力学第1、2定律,通过改变制冷剂R134a的充注量、室外环境温度和压缩机转速等工况条件,推导出纯电动车热泵系统的性能系数(COP)及其火用损失和火用效率的计算公式,并分析了系统的性能.结果表明:制冷剂R134a的最佳充注量为400g,纯电动车热泵系统总的火用损失为0.61-1.28kW;冷凝器和蒸发器的火用效率较低,分别为37.9%-53.1%、34.2%-61.8%。 展开更多
关键词 纯电动车热泵系统 充注量 变工况 火用性能
下载PDF
Efficiency comparison and performance analysis of internally-cooled liquid desiccant dehumidifiers using LiCl and CaCl2 aqueous solutions 被引量:2
3
作者 Dong-gen PENG Shun-yi LI +3 位作者 Dan-ting LUO Yu-ting FU Xiao-song CHENG Yin LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第1期44-63,共20页
Internally-cooled dehumidifiers are efficient liquid desiccant dehumidifiers, whose performance is mainly determined by the device structure and operating conditions. Based on energy and mass conservation in the air, ... Internally-cooled dehumidifiers are efficient liquid desiccant dehumidifiers, whose performance is mainly determined by the device structure and operating conditions. Based on energy and mass conservation in the air, solution, and cooling water in the device, mathematical models are built and their theoretical performance is simulated and analyzed in this paper. A novel measure of dehumidification efficiency is introduced to evaluate the performance of internally-cooled dehumidifiers, in which the equilibrium humidity ratio of the inlet solution is calculated according to the minimum temperature in the inlet solution and the cooling water. Numerical simulations show that a counter flow between air and solution is always the most efficient, followed by cross flow, and parallel flow is the least efficient. Cooling water with the same flow direction as the solution performs better than that with a counter flow, with approximately a 5% improvement in efficiency. Compared with Ca Cl2, the dehumidification efficiency of a Li Cl solution is greater by 60%, while its exergy efficiency is less by 16%. Dehumidification efficiency can be improved with the number of air-solution heat transfer units(NTUa-s) increasing, and reduced with the air mass flow rate raised. With NTUa-s increasing, exergy efficiency can be improved, and an increase in mass flow rate of cooling water results in a decrease of efficiency. Higher solution concentration and lower inlet temperature of solution and air can achieve both higher dehumidification efficiency and exergy efficiency. 展开更多
关键词 Liquid desiccant Internally-cooled dehumidifiers Performance comparison Dehumidification efficiency Exergy efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部