A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted....A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.展开更多
Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitiv...Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitive detector that can convert analogue signal into digital one.Results Compared with conventional optical lever test system which had been applied to measure rocket attitude angle,the new system used the position sensitive detector to replace the screen and high-speed photographic instrumentation as grapher,which can avert photointerpretive data reduction and apply to field experiment more easily and pre- cisely .Conclusion Experimental results show that the test system can be used in measuring the yaw and pitch angles of rocket effectively.展开更多
The purpose of this development is to detect the parallelism between the breech horizontal platform and the datum tube axis of the rocket artillery. The located aiming mechanism at the muzzle and located adjustment me...The purpose of this development is to detect the parallelism between the breech horizontal platform and the datum tube axis of the rocket artillery. The located aiming mechanism at the muzzle and located adjustment mechanism at the breech are designed in the system. Besides those, the system also uses an autocollimator with accuracy of 1″ and a collimating mirror together to determine the axis of the datum tube. An electronic level with accuracy of 2″ is employed to measure and display the value of the included angle and the parameter of the inclined direction. The entire accuracy of this system is σ≤±9.1″. This paper describes the composition and the operating principle of the system and analyzes the accuracy. The development of this system supplies reliable measurement method for new rocket artilleries and artilleries, and this technology is of a good application prospect.展开更多
N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to t...N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.展开更多
This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and t...This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.展开更多
文摘A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.
文摘Aim To describe a news system for measuring the and pitch angles of rocket during the launch phase Methods Optical system was to reflect the spot that represents the angular movement of rocket to the position sensitive detector that can convert analogue signal into digital one.Results Compared with conventional optical lever test system which had been applied to measure rocket attitude angle,the new system used the position sensitive detector to replace the screen and high-speed photographic instrumentation as grapher,which can avert photointerpretive data reduction and apply to field experiment more easily and pre- cisely .Conclusion Experimental results show that the test system can be used in measuring the yaw and pitch angles of rocket effectively.
文摘The purpose of this development is to detect the parallelism between the breech horizontal platform and the datum tube axis of the rocket artillery. The located aiming mechanism at the muzzle and located adjustment mechanism at the breech are designed in the system. Besides those, the system also uses an autocollimator with accuracy of 1″ and a collimating mirror together to determine the axis of the datum tube. An electronic level with accuracy of 2″ is employed to measure and display the value of the included angle and the parameter of the inclined direction. The entire accuracy of this system is σ≤±9.1″. This paper describes the composition and the operating principle of the system and analyzes the accuracy. The development of this system supplies reliable measurement method for new rocket artilleries and artilleries, and this technology is of a good application prospect.
文摘N2O represents a popular oxidizer for hybrid rocket motors for a variety of reasons, including safety, ease of access and self-pressurization. It is often used as a saturated two-phase fluid in these applications to take advantage of self-pressurization. Recent interest in using this oxidizer in regeneratively cooled engines requires a detailed heat transfer process analysis to the coolant, in order to quantify performance. Since the injection of N2O typically takes place in the two-phase region, our study focuses on heat transfer rates in this region, and extends the region to include superheated vapor. This analysis is critical for these cooling applications, because the exothermic decomposition nature of N2O also means that unchecked heating in the superheated region may result in a runaway reaction in the cooling passages. Furthermore, provided that sufficient heat transfer rates are available, N2O is expected to accelerate in the cooling passages due to Rayleigh flow effects much like those of a calorically perfect gas. The proximity of superheated N2O to its saturated vapor curve, at the conditions studied here, makes the suitability of a perfect gas model questionable, but that benchmarks is still useful. This paper presents the development of an experimental apparatus (a "Rayleigh tube"), specifically designed to study this problem, and test the analytical methods developed to model it. Since we focus on the development of the apparatus, the data presented were uses primarily calorically perfect gas surrogates, but the goal is to apply the apparatus and method to N2O. The design and construction of the Rayleigh tube is presented, along with preliminary results with perfect gases. Finally, we present preliminary results on heated N2O flow. Using a simple model for predicted dry-out point, we investigate where superheating may be expected to occur. We present estimates of critical heating and compare them to the heat required to achieve self-decomposition.
基金supported by the Space Cooperation Project between Russia and China
文摘This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.