期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
“火花状”直线度图的处理方法
1
作者 陶宏霞 李素景 《机械工程师》 2006年第1期128-129,共2页
在龙门刨床或龙门导轨磨床窄长工作台运动直线度检测中,采用了“火花状”直线度图的处理方法。文中介绍了采用火花状直线度图的计算方法以及测量中应注意的相关问题,并指出在此时用通常的直线度处理方法是不合适的。
关键词 运动直线度 火花状 测量截线 测量误差
下载PDF
Review on non-conventional machining of shape memory alloys 被引量:8
2
作者 M.MANJAIAH S.NARENDRANATH S.BASAVARAJAPPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期12-21,共10页
Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corro... Shape memory alloys (SMAs) are the developing advanced materials due to their versatile specific properties such as pseudoelasticity, shape memory effect (SME), biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. Therefore, the SMAs are used in many applications such as aerospace, medical and automobile. However, the conventional machining of SMAs causes serious tool wear, time consuming and less dimensional deformity due to severe strain hardening and pseudoelasticity. These materials can be machined using non-conventional methods such as laser machining, water jet machining (WJM) and electrochemical machining (ECM), but these processes are limited to complexity and mechanical properties of the component. Electrical discharge machining (EDM) and wire EDM (WEDM) show high capability to machine SMAs of complex shapes with precise dimensions. The aim of this work is to present the consolidated references on the machining of SMAs using EDM and WEDM and subsequently identify the research gaps. In support to these research gaps, this work has also evolved the future research directions. 展开更多
关键词 non-conventional machining electrical discharge machining wire EDM shape memory alloys
下载PDF
Wire electric discharge machining characteristics of titanium nickel shape memory alloy
3
作者 M.MANJAIAH S.NARENDRANATH +1 位作者 S.BASAVARAJAPPA V.N.GAITONDE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3201-3209,共9页
Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditiona... Ti Ni shape memory alloys(SMAs) have been normally used as the competent elements in large part of the industries due to outstanding properties, such as super elasticity and shape memory effects. However, traditional machining of SMAs is quite complex due to these properties. Hence, the wire electric discharge machining(WEDM) characteristics of Ti Ni SMA was studied. The experiments were planned as per L27 orthogonal array to minimize the experiments, each experiment was performed under different conditions of pulse duration, pulse off time, servo voltage, flushing pressure and wire speed. A multi-response optimization method using Taguchi design with utility concept has been proposed for simultaneous optimization. The analysis of means(ANOM) and analysis of variance(ANOVA) on signal to noise(S/N) ratio were performed for determining the optimal parameter levels. Taguchi analysis reveals that a combination of 1 μs pulse duration, 3.8 μs pulse off time, 40 V servo voltage, 1.8×105 Pa flushing pressure and 8 m/min wire speed is beneficial for simultaneously maximizing the material removal rate(MRR) and minimizing the surface roughness. The optimization results of WEDM of Ti Ni SMA also indicate that pulse duration significantly affects the material removal rate and surface roughness. The discharged craters, micro cracks and recast layer were observed on the machined surface at large pulse duration. 展开更多
关键词 TiNi shape memory alloy wire electric discharge machining(WEDM) surface roughness material removal rate surface morphology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部