In this paper, thermal characteristics of the high-power LED spot lamp are reported. The emphasis is placed upon optimizing design of the heat sink of LED spot lamp using the optimization module and the orthogonal-exp...In this paper, thermal characteristics of the high-power LED spot lamp are reported. The emphasis is placed upon optimizing design of the heat sink of LED spot lamp using the optimization module and the orthogonal-experiment method. Results demonstrate that the weight of the heat sink is decreased to 46.1% of that for the initial structure, and the influence of each factor on junction temperature and weight of the heat sink is acquired by range analysis. Finally, the influence of ambient temperature and natural convection coefficient on the LED maximum temperature is analyzed. The results and the optimizing methodology are of great importance to the thermal design of LED lamps.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province (No.Y104436)the Science and Technology Fund Projects of Zhejiang Province (No.2008C21158)the Innovative Basement Project of Graduate Education of Zhejiang Province
文摘In this paper, thermal characteristics of the high-power LED spot lamp are reported. The emphasis is placed upon optimizing design of the heat sink of LED spot lamp using the optimization module and the orthogonal-experiment method. Results demonstrate that the weight of the heat sink is decreased to 46.1% of that for the initial structure, and the influence of each factor on junction temperature and weight of the heat sink is acquired by range analysis. Finally, the influence of ambient temperature and natural convection coefficient on the LED maximum temperature is analyzed. The results and the optimizing methodology are of great importance to the thermal design of LED lamps.