利用改装的家用微波炉和自制的无电极灯(EDL)试验了5种酚在水溶液中的微波辅助光催化降解效果。结果表明,反应30 m in,微波辅助光催化作用(MW/EDL/TiO2)能去除80%以上的苯酚、间硝基苯酚、对氯苯酚和对甲酚,相应溶液的总有机碳(TOC)均减...利用改装的家用微波炉和自制的无电极灯(EDL)试验了5种酚在水溶液中的微波辅助光催化降解效果。结果表明,反应30 m in,微波辅助光催化作用(MW/EDL/TiO2)能去除80%以上的苯酚、间硝基苯酚、对氯苯酚和对甲酚,相应溶液的总有机碳(TOC)均减少70%以上,2-萘酚的去除率为59%,溶液TOC减少54%;微波(MW或MW/TiO2)作用对酚的去除率有一定贡献;对上述5种酚的微波辅助光催化反应动力学进行了初步研究,发现均符合准一级动力学方程。展开更多
PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circui...PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.展开更多
Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Th...Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.展开更多
文摘利用改装的家用微波炉和自制的无电极灯(EDL)试验了5种酚在水溶液中的微波辅助光催化降解效果。结果表明,反应30 m in,微波辅助光催化作用(MW/EDL/TiO2)能去除80%以上的苯酚、间硝基苯酚、对氯苯酚和对甲酚,相应溶液的总有机碳(TOC)均减少70%以上,2-萘酚的去除率为59%,溶液TOC减少54%;微波(MW或MW/TiO2)作用对酚的去除率有一定贡献;对上述5种酚的微波辅助光催化反应动力学进行了初步研究,发现均符合准一级动力学方程。
文摘PSPICE model driven by an electric equivalent circuit of a piezoelectric circuit is presented. In order to confirm this model to be effective, an independent model of cold cathode fluorescent lamp(CCFL) driving circuit is used to conduct simulations, leading to a precise modeling. A library is configured through modeling and its accuracy is verified through simulations for widely used and representative lamps such as CCFL, fluorescent lamps, HID lamps, and electrodeless fluorescent lamps. On the basis of experiments, a lamp simulation is also performed using PSPICE, which allows us to take advantage of the lamp library easily. Also, PSPICE model driven by an electric equivalent circuit of a piezoelectric transformer is presented. In order to confirm this model to be effective, an independent model of CCFL driving circuit is used to conduct simulations, leading to a precise modeling. In addition, a new type of electronic ballast is proposed, which allows 35 W-class(T5-class) fluorescent lamp to work. This system is built by a rectifier which has improved power factor and half-bridge series resonant inverter. Also, with size of 27.5 mm high, 27.5 mm wide and 2.5 mm thick, the produced piezoelectric transformer has a high step-up ratio, through which it is possible for the electric ballast circuit to be lighter, smaller and more efficient. After the produced ballast is used to drive the fluorescent lamp for 25 min, it yields 0.95 in power factor correction, 86% in efficiency, 35.07 W in output voltage and 20.5 °C in temperature increase while meeting the characteristics of the 35 W-class fluorescent lamp.
基金This work was supported by the National Natural Science Foundation of China(52073162,and 11774204)the Major Program of Natural Science Foundation of Shandong Province(ZR2019ZD43)X.T.H also acknowledged support from the ARC Centre of Excellence in Exciton Science(CE170100026).H.Y.thanks the Qilu Young Scholar Program of Shandong University.
文摘Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.