The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging fr...The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.展开更多
A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used t...A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.展开更多
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify th...Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.展开更多
Objective: To evaluate the therapeutic effects and complications of hydroxyapatite (HA) orbital implantation on patients after trauma-related surgeries. Methods : Retrospective analysis was made from 211 cases (...Objective: To evaluate the therapeutic effects and complications of hydroxyapatite (HA) orbital implantation on patients after trauma-related surgeries. Methods : Retrospective analysis was made from 211 cases (211 eyes ) who underwent HA orbital implant placement after trauma-related enucleation or evisceration, including 68 cases of evisceration and primary HA implant placement, 77 cases of enucleation and HA implant placement wrapped with multi-windowed sclera, 66 cases of enucleation and HA implant placement free of wrapping. All the cases were followed up for 1-5 years to observe the therapeutic effects and major complications. Results: Five of 211 cases had wound dehiscence. Ten cases had HA implants exposure, including 1 case suffering severe orbital infection and requiring HA implant removal. The implants exposure incidences by the three surgical methods were from 1.30% to 10.06% and averaged 4.74%. Significant difference was found in late exposure incidence and total incidence from the three methods ( X^2 = 13. 372, P 〈 0.01 and X6^2 = 7. 540, P 〈 0.05 ). Two cases had shrinkage of the lower fornix. Enophthalmos occurred in 1 case treated by method 1 and was corrected by implanting porous polyethylene (Medpor) plate into the bottom of orbit. In 210 cases, the artificial eye moved well and the cosmetic results were satisfactory. Conclusions- Different surgical methods have their own merit and disadvantage. Enucleation and placement of HA implant wrapped with multi-windowed sclera has corroborated fewer complications than others.展开更多
Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. I...Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements. Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.展开更多
基金Projects 50490273 supported by the National Natural Science Foundation of China2007CB209400 by the National Basic Research Program of China+1 种基金08KJD130003 by the Basic Research Program of University in Jiangsu ProvinceXKY2007219 by Xuzhou Institute of Technology
文摘The mechanical properties of limestone such as the stress-strain curve, the variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the action of temperatures ranging from room temperature to 800 °C.Our results show that:1) the temperature has not clear effect on the mechanical properties of limestone from room temperature to 600 °C.However, the mechanical properties of limestone deteriorate rapidly when the temperature is above 600 °C.In this case, the peak stress and modulus of elasticity decrease rapidly.When the temperature reaches 800 °C, the entire process, showing the stress-strain curve is displayed indicating an obvious state of plastic-deformation;2) the failure mode of limestone shows the breakdown of tensile strength from room temperature to 600 °C, as well as the compress shearing damage over 600 °C;3) combining our test results with the concept of thermal damage, a thermal damage equation was derived.
基金Project supported by the Natural Science Foundation of China(No. 50378041) and the Specialized Research Fund for the Doc-toral Program of Higher Education (No. 20030487016), China
文摘A new structural damage identification method using limited test static displacement based on grey system theory is proposed in this paper. The grey relation coefficient of displacement curvature is defined and used to locate damage in the structure, and an iterative estimation scheme for solving nonlinear optimization programming problems based on the quadratic programming technique is used to identify the damage magnitude. A numerical example of a cantilever beam with single or multiple damages is used to examine the capability of the proposed grey-theory-based method to localize and identify damages. The factors of meas-urement noise and incomplete test data are also discussed. The numerical results showed that the damage in the structure can be localized correctly through using the grey-related coefficient of displacement curvature, and the damage magnitude can be iden-tified with a high degree of accuracy, regardless of the number of measured displacement nodes. This proposed method only requires limited static test data, which is easily available in practice, and has wide applications in structural damage detection.
基金Supported by National Natural Science Foundation of China (No. 50778077 and No. 50608036)
文摘Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.
文摘Objective: To evaluate the therapeutic effects and complications of hydroxyapatite (HA) orbital implantation on patients after trauma-related surgeries. Methods : Retrospective analysis was made from 211 cases (211 eyes ) who underwent HA orbital implant placement after trauma-related enucleation or evisceration, including 68 cases of evisceration and primary HA implant placement, 77 cases of enucleation and HA implant placement wrapped with multi-windowed sclera, 66 cases of enucleation and HA implant placement free of wrapping. All the cases were followed up for 1-5 years to observe the therapeutic effects and major complications. Results: Five of 211 cases had wound dehiscence. Ten cases had HA implants exposure, including 1 case suffering severe orbital infection and requiring HA implant removal. The implants exposure incidences by the three surgical methods were from 1.30% to 10.06% and averaged 4.74%. Significant difference was found in late exposure incidence and total incidence from the three methods ( X^2 = 13. 372, P 〈 0.01 and X6^2 = 7. 540, P 〈 0.05 ). Two cases had shrinkage of the lower fornix. Enophthalmos occurred in 1 case treated by method 1 and was corrected by implanting porous polyethylene (Medpor) plate into the bottom of orbit. In 210 cases, the artificial eye moved well and the cosmetic results were satisfactory. Conclusions- Different surgical methods have their own merit and disadvantage. Enucleation and placement of HA implant wrapped with multi-windowed sclera has corroborated fewer complications than others.
文摘Objective: To explore the method to repair bone defect with bone-morphogenetic-protein loaded hydroxyapatite/collagen-poly(L-lactic acid) composite. Methods: 18 adult beagle dogs were randomly divided into 3 groups. In Group A, bone-morphogenetic-protein (BMP) loaded hydroxyapatite/collagen-poly(L-lactic acid) (HAC-PLA) scaffold was implanted in a 2 cm diaphyseal defect in the radius. In Group B, unloaded pure HAC-PLA scaffold was implanted in the defects. No material was implanted in Group C (control group). The dogs were sacrificed 6 months postoperatively. Features of biocompatibility, biodegradability and osteoinduction were evaluated with histological, radiological examinations and bone mineral density (BMD) measurements. Results: In Group A, the radius defect healed after the treatment with BMP loaded HAC-PLA. BMD at the site of the defect was higher than that of the contralateral radius. Fibrous union developed in the animals of the control group. Conclusions: BMP not only promotes osteogenesis but also accelerates degradation of the biomaterials. Optimized design parameters of a three-dimensional porous biomaterial would give full scope to the role of BMP as an osteoinductive growth factor.