针对小样本振荡型数据序列的灰建模预测问题,提出基于灰作用量优化的分数阶GM(1,1|sin+cos)预测模型.在已有经典GM(1,1|sin)的基础上,一方面,将一阶累加灰生成拓展为分数阶累加灰生成,使得构建的模型更加符合新信息优先原理.另一方面,...针对小样本振荡型数据序列的灰建模预测问题,提出基于灰作用量优化的分数阶GM(1,1|sin+cos)预测模型.在已有经典GM(1,1|sin)的基础上,一方面,将一阶累加灰生成拓展为分数阶累加灰生成,使得构建的模型更加符合新信息优先原理.另一方面,将灰作用量b_1 sin pk+b_2改进为b_1 sin pk+b_2 cos qk+b_3,其作用是通过增加余弦函数项cos qk,使得具有两个不同周期的运动项cos qk与b_1 sin pk+b_2叠加复合之后,能够生成更加贴近于振荡原始序列趋势和特征的时间响应序列,从而得到拟合精度较高的灰色模型.其次,对建模过程的时间响应式、模型参数p和q的最优估计问题进行了研究,构造了最优累加阶数r、参数p和q的粒子群优化算法,得到的优化模型实现了某些类型振荡序列较高精度的预测.实际数据例子结果表明,所建立的模型能够较好地模拟常见振荡型数据序列的波动趋势和特征,具有较强的适用性和拟合性能.展开更多
文摘针对小样本振荡型数据序列的灰建模预测问题,提出基于灰作用量优化的分数阶GM(1,1|sin+cos)预测模型.在已有经典GM(1,1|sin)的基础上,一方面,将一阶累加灰生成拓展为分数阶累加灰生成,使得构建的模型更加符合新信息优先原理.另一方面,将灰作用量b_1 sin pk+b_2改进为b_1 sin pk+b_2 cos qk+b_3,其作用是通过增加余弦函数项cos qk,使得具有两个不同周期的运动项cos qk与b_1 sin pk+b_2叠加复合之后,能够生成更加贴近于振荡原始序列趋势和特征的时间响应序列,从而得到拟合精度较高的灰色模型.其次,对建模过程的时间响应式、模型参数p和q的最优估计问题进行了研究,构造了最优累加阶数r、参数p和q的粒子群优化算法,得到的优化模型实现了某些类型振荡序列较高精度的预测.实际数据例子结果表明,所建立的模型能够较好地模拟常见振荡型数据序列的波动趋势和特征,具有较强的适用性和拟合性能.