期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
RCEP签订背景下宁波舟山港货物吞吐量预测 被引量:1
1
作者 陈志远 刘利民 《浙江万里学院学报》 2022年第3期14-19,共6页
首先通过文献分析法,从近年来与港口预测有关的研究文献中选取相关的影响因素并进行分析;其次,运用灰关联预测模型对各影响因素进行分析,找到对宁波舟山港货物吞吐量影响较大的影响因素;最后,通过弹性系数法对宁波舟山港未来的货物吞吐... 首先通过文献分析法,从近年来与港口预测有关的研究文献中选取相关的影响因素并进行分析;其次,运用灰关联预测模型对各影响因素进行分析,找到对宁波舟山港货物吞吐量影响较大的影响因素;最后,通过弹性系数法对宁波舟山港未来的货物吞吐量进行预测,对RCEP签订如何影响宁波舟山港的发展进行进一步探究。研究结果表明:对宁波舟山港货物运输吞吐量影响关联和显著影响的因素主要包括非金属矿石、化工原材料及制品、石油和塑料及其他制造商、钢铁和其他重要金属矿石;预计2021-2025年期间宁波舟山港的货物吞吐量每年上涨均超过3%,外贸吞吐量每年上涨均超过5%。 展开更多
关键词 RCEP 宁波舟山港 灰关联度预测模型 货物吞吐量
下载PDF
A strip thickness prediction method of hot rolling based on D_S information reconstruction 被引量:1
2
作者 孙丽杰 邵诚 张利 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2192-2200,共9页
To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to impleme... To improve prediction accuracy of strip thickness in hot rolling, a kind of Dempster/Shafer(D_S) information reconstitution prediction method(DSIRPM) was presented. DSIRPM basically consisted of three steps to implement the prediction of strip thickness. Firstly, iba Analyzer was employed to analyze the periodicity of hot rolling and find three sensitive parameters to strip thickness, which were used to undertake polynomial curve fitting prediction based on least square respectively, and preliminary prediction results were obtained. Then, D_S evidence theory was used to reconstruct the prediction results under different parameters, in which basic probability assignment(BPA) was the key and the proposed contribution rate calculated using grey relational degree was regarded as BPA, which realizes BPA selection objectively. Finally, from this distribution, future strip thickness trend was inferred. Experimental results clearly show the improved prediction accuracy and stability compared with other prediction models, such as GM(1,1) and the weighted average prediction model. 展开更多
关键词 grey relational degree GM(1 1) model Dempster/Shafer (D_S) method least square method thickness prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部