In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redis...In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redistribution was examined using (137~)Cs technique under different hillslope components. With the combination of geochemical methods, the migration characteristics of major elements in soils of three hillslope components in both the horizontal and vertical directions were determined. Thirty-seven soil samples were collected and analyzed for 137 Cs and the major elements were determined. By using the profile distribution model the mean soil redistribution rates were found to be-17.01, 0.40 and-23.30t ha-1 yr-1 in the summit(BYSD), shoulder(BYSY) and toeslope(BYSJ) components of the studied hillslope, respectively. In comparison to BYSD, the sesquioxides of Fe_2O_3 and TiO_2 tend to be enriched, whereas the alkalis(CaO, MgO, Na_2O and K_2O) tend to be depleted, both in the shoulder and toeslope components. Due to human and animal activities, the contents of CaO, MgO, K_2O and Na_2O have somewhat increased within the topsoil. The results indicated that (137~)Cs activities are significantly correlated with clay particles and organic matter, and are affected by the pedogenic process and vegatation. Overall, it maybe necessary to use techniques such as (137~)Cs to investigate soil erosion with the combination of geochemical methods.展开更多
Medical waste incinerators emit a wide range of pollutants like heavy metals, dioxins and furans. These include Pb (lead), Hg (mercury), Cd (cadmium), fine dust particles and PICs (products of incomplete combus...Medical waste incinerators emit a wide range of pollutants like heavy metals, dioxins and furans. These include Pb (lead), Hg (mercury), Cd (cadmium), fine dust particles and PICs (products of incomplete combustion). The objective was to determine the elemental composition of medical waste residue after incineration in selected hospitals in Kiambu County, Kenya. Bottom/fly ash samples were collected from the burners/incinerators in the selected health care facilities visited. The concentrations of the metals in the fly ash and bottom ash were determined using an XRF (X-ray fluorescence) spectrometer after acid digestion. The concentrations of heavy metals in the fly and bottom ash were as follows: Ti (titanium) 62-839 mg·kg^-1 and a mean of 202 mg·kg^-1 and 344 mg·kg^-1 in fly ash and bottom ash, respectively. Ca (calcium) was 37,753-204,475 mg.kg1 with means of 27,132 mg.kg-1 in fly ash and 131,185 mgg·kg^-1 in bottom ash. Zn (zinc) was 297-6,605 mg·kg^-1 with means (2,307 mg·kg^-1 in fly ash, 4,359 mg·kg^-1 in bottom ash), Pb (13-1,819 mg·kg^-1) had means of 280 mg·kg^-1 in fly ash and 291 mg-kg-1 in bottom ash. Cu (copper) (9.5-250 mg·kg^-1) had means of 83.47 mg·kg^-1 in fly ash and 98.8 mg·kg^-1 in bottom ash. The wide variations in results can be attributed to the different burners/incinerators used and different segregation methods of the medical waste. The results show that the reported levels of heavy metals could pose a health risk due to possible leaching after disposal.展开更多
This study investigated the impact of topography and vegetation on distribution of rare earth elements(REEs)in calcareous soils using methods of single extraction and mass balance calculation. The purposes of the stud...This study investigated the impact of topography and vegetation on distribution of rare earth elements(REEs)in calcareous soils using methods of single extraction and mass balance calculation. The purposes of the study were to set a basis for further research on the biogeochemical REE cycle and to provide references for soil–water conservation and REE-containing fertilizer amendments. The results show a generally flat Post-Archean Average Australian Shale—normalized REE pattern for the studied calcareous soils. REE enrichment varied widely. The proportion of acidsoluble phases of heavy REEs was higher than that of light REEs. From top to bottom of the studied hills, dominant REE sources transitioned from limestone in-situ weathering to input from REE-containing phases(e.g., clay minerals,amorphous iron, REE-containing fluids). Our results indicate that the REE content of calcareous soils is mainly controlled by slope aspect, while the enrichment degree of REEs is related to geomorphological position and vegetation type.Furthermore, the proportion of acid-soluble phases of REEs is mainly controlled by geomorphological position.展开更多
The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling p...The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.展开更多
Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of ...Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)grants(Grant Nos.41473122,41073096)the National Key Basic Research Program of China(2013CB956702)the Hundred Talents Program of the Chinese Academy of Sciences
文摘In this study, we investigated the spatial characteristics of the rate of soil distribution and the mechanism of major element migration in a typical karst hillslope in Guangxi Province, Southwestern China. Soil redistribution was examined using (137~)Cs technique under different hillslope components. With the combination of geochemical methods, the migration characteristics of major elements in soils of three hillslope components in both the horizontal and vertical directions were determined. Thirty-seven soil samples were collected and analyzed for 137 Cs and the major elements were determined. By using the profile distribution model the mean soil redistribution rates were found to be-17.01, 0.40 and-23.30t ha-1 yr-1 in the summit(BYSD), shoulder(BYSY) and toeslope(BYSJ) components of the studied hillslope, respectively. In comparison to BYSD, the sesquioxides of Fe_2O_3 and TiO_2 tend to be enriched, whereas the alkalis(CaO, MgO, Na_2O and K_2O) tend to be depleted, both in the shoulder and toeslope components. Due to human and animal activities, the contents of CaO, MgO, K_2O and Na_2O have somewhat increased within the topsoil. The results indicated that (137~)Cs activities are significantly correlated with clay particles and organic matter, and are affected by the pedogenic process and vegatation. Overall, it maybe necessary to use techniques such as (137~)Cs to investigate soil erosion with the combination of geochemical methods.
文摘Medical waste incinerators emit a wide range of pollutants like heavy metals, dioxins and furans. These include Pb (lead), Hg (mercury), Cd (cadmium), fine dust particles and PICs (products of incomplete combustion). The objective was to determine the elemental composition of medical waste residue after incineration in selected hospitals in Kiambu County, Kenya. Bottom/fly ash samples were collected from the burners/incinerators in the selected health care facilities visited. The concentrations of the metals in the fly ash and bottom ash were determined using an XRF (X-ray fluorescence) spectrometer after acid digestion. The concentrations of heavy metals in the fly and bottom ash were as follows: Ti (titanium) 62-839 mg·kg^-1 and a mean of 202 mg·kg^-1 and 344 mg·kg^-1 in fly ash and bottom ash, respectively. Ca (calcium) was 37,753-204,475 mg.kg1 with means of 27,132 mg.kg-1 in fly ash and 131,185 mgg·kg^-1 in bottom ash. Zn (zinc) was 297-6,605 mg·kg^-1 with means (2,307 mg·kg^-1 in fly ash, 4,359 mg·kg^-1 in bottom ash), Pb (13-1,819 mg·kg^-1) had means of 280 mg·kg^-1 in fly ash and 291 mg-kg-1 in bottom ash. Cu (copper) (9.5-250 mg·kg^-1) had means of 83.47 mg·kg^-1 in fly ash and 98.8 mg·kg^-1 in bottom ash. The wide variations in results can be attributed to the different burners/incinerators used and different segregation methods of the medical waste. The results show that the reported levels of heavy metals could pose a health risk due to possible leaching after disposal.
基金supported jointly by the National Natural Science Foundation of China(41571130042,41522207,41325010)the State’s Key Project of Research and Development Plan of China(2016YFA0601002)
文摘This study investigated the impact of topography and vegetation on distribution of rare earth elements(REEs)in calcareous soils using methods of single extraction and mass balance calculation. The purposes of the study were to set a basis for further research on the biogeochemical REE cycle and to provide references for soil–water conservation and REE-containing fertilizer amendments. The results show a generally flat Post-Archean Average Australian Shale—normalized REE pattern for the studied calcareous soils. REE enrichment varied widely. The proportion of acidsoluble phases of heavy REEs was higher than that of light REEs. From top to bottom of the studied hills, dominant REE sources transitioned from limestone in-situ weathering to input from REE-containing phases(e.g., clay minerals,amorphous iron, REE-containing fluids). Our results indicate that the REE content of calcareous soils is mainly controlled by slope aspect, while the enrichment degree of REEs is related to geomorphological position and vegetation type.Furthermore, the proportion of acid-soluble phases of REEs is mainly controlled by geomorphological position.
基金Project 50574037 supported by the National Natural Science Foundation of China
文摘The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.
基金Project (No.50478090) supported by the National Natural Science Foundation of China
文摘Aphysical model facility was designed, built, and setup for conducting model tests on a composite foundation in a soil ground. The model tests were carried out on a composite foundation with different combinations of vertical reinforcement elements in the same soil ground. Via the analysis of the collected data the characteristics of the composite foundation with different reinforcing elements were obtained, including the characteristics of load-settlement curves, column stresses, stresses of the intercolumn soil, pile-soil stress ratio, and load-sharing ratios of columns and soil. Results from the model tests reveal the mechanism of a composite foundation with different reinforcing elements quantitatively. It is concluded that both a composite foundation with a combination of steel pipe pile and sand column and that with a combination of concrete pile and lime column have a higher bearing capacity than the composite foundation with only sand columns with the same conditions of soil ground and loading. A composite foundation with lime column and sand column embodies no much better performance than that with sand colunms only.