It is important to emphasize the value of research in safe mining technology of high-risk water outburst coal seams. We describe briefly current conditions abroad and in China. Based on an Ordovician limestone aquifer...It is important to emphasize the value of research in safe mining technology of high-risk water outburst coal seams. We describe briefly current conditions abroad and in China. Based on an Ordovician limestone aquifer with high-risk water outburst seams in the Feicheng coal field, we analyzed the water-resistant characteristics of a coal floor aquifuge and the behavior of water head intrusion of a confined aquifer and propose a safe criterion model and relevant technology of mining above aquifers. This has brought satisfactory results in engineering practice.展开更多
The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties...The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.展开更多
This article studies the effects of limestone powder on rheological properties of cement - fly ash mortar with RHEOLAB QC type rotation viscometer. The Bingham fluid model is introduced to fit the yielding stress and ...This article studies the effects of limestone powder on rheological properties of cement - fly ash mortar with RHEOLAB QC type rotation viscometer. The Bingham fluid model is introduced to fit the yielding stress and plastic viscosity of the mortar. The POWER LAW fluid model is introduced to fit the rheological index of the mortar. The results show that, adding limestone powder and fly ash to the cement mortar significantly decreases the yield stress of the mortar, changes the plastic viscosity of the mortar, increases the rheological index, decreases the degree of shear thinning of the mortar, and thereby improves the mortar' s workability. In the case of cement - fly ash mortar, with the increase of limestone powder content, both the yield stress and plastic viscosity of the mortar increase. When the limestone powder content is not higher than 14%, the increase of yield stress is not significant. When the limestone powder content is lower than 8%, the increase of plastic viscosity is not significant. When the content of limestone powder is higher than 22%, the rheological index of the mortar decreases and the degree of shear thinning increases. The effects of limestone powder' s packing density, shape and size, specific surface area, and fluid volume, are found to be the four major factors responsible for the changes ofrheological properties of the mortar.展开更多
基金support for this work, provided by the National Natural Science Foundation of China (No50834005)the National Basic Research Program of China (No2007CB209402)
文摘It is important to emphasize the value of research in safe mining technology of high-risk water outburst coal seams. We describe briefly current conditions abroad and in China. Based on an Ordovician limestone aquifer with high-risk water outburst seams in the Feicheng coal field, we analyzed the water-resistant characteristics of a coal floor aquifuge and the behavior of water head intrusion of a confined aquifer and propose a safe criterion model and relevant technology of mining above aquifers. This has brought satisfactory results in engineering practice.
基金funded by the State Key Development Program for Basic Research of China(No.2013CB227900)the Joint Funds of the National Natural Science Foundation of China(NoU1261201)Prof.Mao Xianbiao for his valuable assistance in the preparation of manuscript
文摘The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponential type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10^(-7). Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained,and the sums of squared residuals belong to 10^(-3)order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep characteristics of limestone very well.
文摘This article studies the effects of limestone powder on rheological properties of cement - fly ash mortar with RHEOLAB QC type rotation viscometer. The Bingham fluid model is introduced to fit the yielding stress and plastic viscosity of the mortar. The POWER LAW fluid model is introduced to fit the rheological index of the mortar. The results show that, adding limestone powder and fly ash to the cement mortar significantly decreases the yield stress of the mortar, changes the plastic viscosity of the mortar, increases the rheological index, decreases the degree of shear thinning of the mortar, and thereby improves the mortar' s workability. In the case of cement - fly ash mortar, with the increase of limestone powder content, both the yield stress and plastic viscosity of the mortar increase. When the limestone powder content is not higher than 14%, the increase of yield stress is not significant. When the limestone powder content is lower than 8%, the increase of plastic viscosity is not significant. When the content of limestone powder is higher than 22%, the rheological index of the mortar decreases and the degree of shear thinning increases. The effects of limestone powder' s packing density, shape and size, specific surface area, and fluid volume, are found to be the four major factors responsible for the changes ofrheological properties of the mortar.